Accurate FDTD wavelet-Galerkin representation of field singularities near conductive wedges

Tsiboukis, Theodoros/ Kantartzis, Nikolaos/ Kosmanis, Theodoros/ Τσιμπούκης, Θεόδωρος/ Κοσμάνης, Θεόδωρος/ Κανταρτζής, Νικόλαος

Institution and School/Department of submitter: ΤΕΙ Θεσσαλονίκης
Keywords: Electrical connectors;Power transmission lines;Αγώγιμες σφήνες;Αριθμητικές λύσεις (Αριθμητική ανάλυση);Μέθοδοι Galerkin;FDTD μέθοδος;FDTD method;Γραμμές διανομής ηλεκτρικής ενέργειας;Ηλεκτρικοί συνδετήρες;Σφήνα-βάση;Wedge-base;Conductive wedges;Numerical solutions (Numerical analysis);Galerkin methods
Issue Date: Jul-2001
Publisher: IEΕΕ
Citation: IEE Proceedings, Microwaves, Antennas and Propagation
Kosmanis,T., Tsiboukis,T., Kantartzis,N.2001. IEE Proceedings, Microwaves, Antennas and Propagation,Jun 2001:IET
Abstract: A novel hybrid technique for the precise representation of field singularities generated by hard to model geometrical peculiarities, such as arbitrarily angled conductive wedges, is presented. Its primary concept lies in the combined implementation of the FDTD method and the wavelet (Daubechies' basis)-Galerkin formulation in different, distinct areas of the computational domain. The robustness and simplicity of the former, used in regions of smooth field variations, and the ability of the latter, utilised near discontinuities, to efficiently simulate highly varying phenomena, allow the precise treatment of sharp wedges. Hence, the proposed algorithm yields sufficiently accurate coarse grid results and short time-advancing intervals, as the numerical verification reveals
Description: Δημοσιεύσεις μελών--ΣΤΕΦ--Τμήμα Οχημάτων,2015
Other Identifiers: 10.1049/ip-map:20010422
Item type: other
Submission Date: 2018-02-28T16:48:04Z
Item language: el
Item access scheme: free
Institution and School/Department of submitter: ΤΕΙ Θεσσαλονίκης
Appears in Collections:Δημοσιεύσεις σε Περιοδικά

Files in This Item:
File Description SizeFormat 
Kosmanis_Kantartzis_Tsiboukis_Accurate_FDTD_Wavelet.pdf534.04 kBAdobe PDFView/Open

 Please use this identifier to cite or link to this item:
  This item is a favorite for 0 people.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.