# **An Enhanced Powerline Channel Noise Model**

COSTAS ASSIMAKOPOULOS, NIOVI PAVLIDOU Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Panepistimioupolis of Thessaloniki, 54124, Thessaloniki, GREECE email: {casim, niovi}@eng.auth.gr

*Abstract*-OFDM has been proved to be a robust technique when it is used in hostile telecommunications media due to its capability to overcome intersymbol interference (ISI). Such a hostile environment is the powerlines when used for communication purposes in the frequency range 1MHz-30MHz. Nevertheless, it is important to understand the noise characteristics in the frequency domain, since OFDM is the parallel transmission of data using orthogonal carriers. In this paper the spectrum is discriminated in narrow bands. In each band the noise characteristics are studied. The non-Gaussian character of the powerline channel noise is proved and new models are constructed after statistical analysis of the noise samples. The noise samples are obtained after a measurements campaign in the laboratory and in apartments.

Key-Words: -Powerline noise, Discrete Multitone Systems, Powerline communications

## **1** Introduction

Powerlines provide a hostile environment for communication signals. However, as the knowledge of their characteristics increase new methods are invented to counterbalance the problems. After so many years of systematic efforts researchers are convinced that Orthogonal Frequency Division Multiplexing (OFDM) is an appropriate candidate for data transmission over power lines. OFDM is very resilient when a communication link suffers from great delay spread [1]. Delay spread is a major problem over power lines [2].

OFDM is the parallel transmission of data over subchannels separated in the frequency domain. When OFDM is applied it is essential to know the subchannel characteristics at the frequencies of interest. A channel model that describes the subchannels' noise characteristics is of major importance, as based on that the bit load per subcarrier can be calculated and additionally, the probability of error of a multicarrier system can be determined. This noise model is the aim of this study. The models are obtained after statistical processing of the data acquired during a great measurements campaign since [3-4]. The results verify already known characteristics and provide new substantive information on the power line channel. The data are obtained in the frequency domain.

There are several attempts in the past trying to estimate the power line capacity [3], [5]. Those attempts did not approach the problem correctly due to the lack of a complete statistical power line channel model. For instance, the capacity was calculated based on average values of the noise power  $E[n^2]$  per frequency. Those values are sufficient when the noise model is gaussian. However, the noise has been proved that is not gaussian [6]. Another approach is to calculate the best or worst noise scenario and calculate extreme levels of capacity [6]. Hence, a communication system that accomplishes to work for the worst noise scenario is ensured that it can work properly under all noise circumstances. However, such an approach should be accompanied with a study concerning the period of time that the channel suffers from the worst scenario. Otherwise, there is a waste of resources because the system does not exploit the current channel's condition, which may be better compared to the worst case.

The power-line channel noise consists of several types of noise due to the different nature of the noise sources. The power line modems have to confront the superposition of all those components that affect the communication signal. There are noise components having a power level that is variant, in terms of seconds, minutes or hours and characterized as colored gaussian background noise. On the other hand there are noise impulses periodic, synchronous or asynchronous to the mains frequency, and non-periodic asynchronous [7]. When impulsive noise hits its magnitude is greater than background noise. Thus, impulsive noise is dominant and causes the greater problem to a communication system. Impulsive noise is parameterized by its amplitude, width and interarrival time. All of them are parameters in the time domain. Nevertheless, when OFDM is applied it would be of great importance if its characteristics are examined in the frequency domain.

In this study we confront the noise as a superposition of its components in the frequency domain. Particularly, we are trying to investigate the specific characteristics that the noise presents in each frequency and create a noise model that is dependent on frequency. Since a general noise model is the target, a great number of samples per frequency are gathered. The noise samples are collected through different hours a day and different days of the years that the measurements campaign lasted. The noise models are extracted and presented for the first time at the best of the authors' knowledge. The paper is organized as follows. In section 2 the noise characteristics are explained. Particularly in section 2.1 the well-known powerline noise components are repeated here for quick reference. Then in section 2.2 the power-line noise sample characteristics are presented in the frequency domain. It is one of the contributions of the paper the indication of the periodicity that the correlation coefficient present between any two distinct in the frequency, noise samples. In section 3 the probability density functions are presented for 241 different frequencies. These parameters are the constituents of the complete noise model of the noise samples in the frequency domain. This is also a novel contribution of the paper. Then in section 4 the validity limits of the models are discussed and the paper concludes in section 5 with some general remarks and proposals for further work.

## 2 Characteristics of the Powerline Channel Noise

#### 2.1 Power line noise components

The power line noise components have been determined in several papers [2], [7], [8], [9]. According to the measurement techniques and technical equipment available there were detected three, four or five components in the literature. Nevertheless, all of them deduce that there is a

background noise component (such as colored Gaussian and narrowband noise due to radio stations transmitting in frequencies less than 30MHz) and impulsive noise either periodic (synchronous or asynchronous to the mains frequency) or nonperiodic asynchronous. From a telecommunications point of view the power line receiver is affected in the time domain from the superposition of all those noise components. When OFDM is applied for data transmission it would be important to know the noise characteristics in the frequency domain, as in fact OFDM is the transmission of data through parallel orthogonal frequencies. Hence, the noise components described in the literature in the time domain should be identified in the spectrum and quantify their effect in every frequency. This is exactly the main target of this paper.

#### **2.2 Power-Line Noise Sample Characteristics**

The noise power spectral density is measured using a spectrum analyzer. An automatic measurements set up was used. Special care was taken to equalize "a-posteriori" the attenuation of the noise samples passing through the filter and the isolation transformer before entering the front end of the spectrum analyzer. The frequency range of interest was swept and noise samples were transferred from the spectrum analyzer to a computer's hard disk. The measurements took place in the lab and in an apartment during several different hours per day.

A great number of noise samples were collected. The noise samples from 1.15MHz up to 30MHz are shown in Fig. 1. The noise level has a great deviation. It is strongly dependent on three parameters. The time of the day that the measurements are carried out, the place of the measurements and the frequency. The time of the day has to do with the human activity. The place has to do with the appliances that are connected and in use i.e. in-house, laboratory and industrial area. Finally, when noise is injected to the power lines, it is attenuated with the frequency increase. Moreover, the frequency bands where there are radio stations will present high noise levels.

The best and worst noise scenario is the lower and upper envelope of Fig. 1. Generally, the noise is stronger in the lower part of the frequency band.

Since the noise has a great variance and dependence from time and place the extraction of average values has no practical interest as those values will be dependent on time and place. Hence, statistical noise models are necessary.



Fig. 1. Noise samples measured in the lab and inhouse. The upper and the lower envelope is the worst and the best noise measured scenario. The lower dark line is the average gaussian noise component and the upper dark line is the average impulsive noise component.

It is interesting to find out whether the noise samples that belong to different frequencies, are statistically independent or not. The noise samples at two different frequencies were considered as two variables and the sweeps as observations. The average correlation coefficient for every pair of variables that differ one frequency step (i.e. 120.2KHz for our experiments) has been calculated. The same calculations were made for those variables that differ two steps, three steps and so on. The noise samples at 1.15MHz and 30MHz are distant 240 steps. The results are presented in Fig. 2. The significance of those correlations is shown in Fig. 3. As can be seen the p-values of most of them are below the 0.05 level of significance. That means that noise samples that are distant in the frequency are still correlated. Fig. 2 depicts that the correlation coefficient have a kind of periodicity with period about 50 steps (6.01MHz frequency distance). In every period the correlation increases until it reaches a peak value. Then the correlation decreases with the frequency until the end of the period and then it repeats this behavior. The peaks are observed at 40, 90, 140 and 190 steps. The peak values become smaller with the frequency increase. This is the first time that the periodic behavior of the correlation coefficients of the power line noise samples, in the frequency domain, is revealed. Undoubtedly, the noise samples at different frequencies are correlated and consequently are statistically dependent.



Fig. 2. Average correlation coefficient between noise samples that are 1 step up to 240 steps distant.

The statistical significance of the correlation coefficient of the noise samples measured for different frequencies, even being far away to each other, is attributed to the fact that those noise samples are the frequency components of repeated phenomena in the time domain that have the same general characteristics impressed in the frequency domain. Those are the noise impulses that have certain statistics concerning time duration. amplitude and inter-arrival time. Those characteristics are measured in the time domain. However, the fourier transform could reveal the spectrum characteristics of the noise impulses. Impulsive noise is more likely to be the reason for the statistically significant correlation among certain frequencies as it is found that is stronger and prevails the background noise. Any relationship that exists among background noise samples in the frequency domain could not be revealed when measurements are not made in the time domain where impulsive noise can be distinguished from

## **3** Probability Density Functions of the Amplitude of the Power Line Noise Samples

background noise.

In the section that follows the probability density functions of the noise density for every frequency where the measurements took place are extracted. The noise samples were processed and the normalized histogram of their amplitudes was extracted for every frequency in the frequency span of measurements.



Fig. 3. Average level of significance of the correlation between noise samples that are 1 step up to 240 steps distant.

Using the smoothing splines method [10] the shape of the probability density functions is revealed. For instance, the normalized histograms and the corresponding smoothing spline curves are shown in Fig. 4 for the frequencies 1.15MHz, 1.81MHz, 12.03MHz and 12.63MHz.

The noise samples' magnitude before processing was transformed in dB. The shape of the curves looks like the probability density distribution of Middleton's canonical class A noise as depicted in [11]. The model is described with equation (1).

$$f_{I}(I) = \sum_{m=0}^{\infty} \frac{A^{m}}{m!} e^{-A} \cdot 1/(\sigma_{g}^{2} + m\frac{\sigma_{I}^{2}}{A}) \cdot e^{-(\sigma_{g}^{2} + m\frac{\sigma_{I}^{2}}{A})^{-1}I}$$
(1)

Power line noise indeed can be described adequately by that curve. The left part of the probability density function (see Fig. 4) is in fact the noise component when m=0 (no noise impulses occurred) and as claimed in [11-12] it corresponds to the gaussian component of the noise. The right part of the probability density function stands for the impulsive component of the noise. The model for the Middleton's class A noise when the random variable is expressed in dB has some special properties that are quite helpful when a researcher tries to extract the noise probability density function using data obtained by measurements. The model involves three parameters that are adequate to express the p.d.f. Those are the  $\sigma_g^2$ , which is the mean power of the gaussian noise, the  $\sigma_1^2$  which is the mean power of the impulsive noise and A that expresses the



Fig. 4. Indicative normalized histograms of the noise power density at 4 different frequencies. The splines curve approximation is plotted to show the approximating p.d.f.'s shape.

impulsive noise traffic.  ${\sigma_g}^2$  and  ${\sigma_I}^2$  are connected through equation 2.

$$\Gamma_A = \frac{\sigma_g^2}{\sigma_I^2} \tag{2}$$

Those three parameters necessary for equation 1 can be easily determined by a normalized histogram of the measured data. The mean power of the gaussian noise  $\sigma_g^2$  is the point on x-axis that the left part of the p.d.f. has the peak. The height *h* of the left peak is connected with A with equation 3.

$$A = \ln(0.0847 / h)$$
(3)

Finally, the distance on x-axis between the left peak and the right peak is connected with  $\Gamma_A$  with equation 4.

$$\Gamma_{A} = [A(10^{(X_{RightPeak} - X_{LeftPeak})/10} - 1)]^{-1}$$
(4)

The proofs of equations (3) and (4) are included in [11].

The location on x-axis of the two peaks and the height of the left peak are prominent even when data measurements are rough. Therefore, the determination of the actual parameters of equation 1 is quite accurate. This is the main advantage of the described statistical extraction of the p.d.f.'s. In Table 1 the  $\sigma_g^2$ ,  $\Gamma_A$  and A are presented for each measured frequency. Please note that in Table 1 the  $\sigma_g^2$  has been transformed in dBm.

| Freq   | A      | $[\sigma^{2}]^{-1}$ | Г.     | Freq       | A      | $[\sigma^{2}]^{-1}$ | Г.     | Freq       |        | $[\sigma^{2}]^{-1}$ | Г.     | Freq       | А      | $[\sigma^{2}]^{-1}$ | Г      |
|--------|--------|---------------------|--------|------------|--------|---------------------|--------|------------|--------|---------------------|--------|------------|--------|---------------------|--------|
| In     | 11     | in                  | 1 A    | In         |        | in                  | • A    | In         |        | in                  | • A    | In         |        | in                  | 1 A    |
| MHz    |        | dBm                 |        | III<br>MHz |        | dBm                 |        | III<br>MHz |        | dBm                 |        | III<br>MHz |        | dBm                 |        |
| 1.1509 | 0.6473 | 39.177              | 0.0516 | 8.3632     | 0.7341 | 56.588              | 0.2592 | 15.5755    | 1.4584 | 80.227              | 0.0126 | 22.7877    | 1.4778 | 75.879              | 0.0425 |
| 1.2711 | 1,1791 | 43,145              | 0.0657 | 8.4834     | 0.8053 | 60.754              | 0.0831 | 15.6957    | 1.4207 | 80.243              | 0.0069 | 22,9079    | 1.5096 | 76.095              | 0.0462 |
| 1 3914 | 1 1683 | 40 745              | 0.0527 | 8 6036     | 0.7816 | 60.456              | 0.0950 | 15 8159    | 1 6037 | 80.259              | 0.0064 | 23.0281    | 1 4007 | 76 143              | 0.0593 |
| 1.5711 | 1.1005 | 43 092              | 0.0233 | 8 7238     | 0.7997 | 60 143              | 0.0365 | 15.0159    | 1 3302 | 80.275              | 0.0080 | 23.1483    | 1.4507 | 76.745              | 0.1143 |
| 1.6318 | 1.2000 | 13.092              | 0.0255 | 8 8440     | 0.7837 | 60.215              | 0.0303 | 16.0563    | 1.3502 | 70.002              | 0.0178 | 23.1105    | 1.5820 | 70.183              | 0.0269 |
| 1.0518 | 0.8003 | 43.400              | 0.0203 | 8 9642     | 0.7857 | 60.899              | 0.0404 | 16 1765    | 1.2550 | 70.061              | 0.0082 | 23.2000    | 1.5861 | 78 500              | 0.0209 |
| 1.7520 | 0.5559 | 44.050              | 0.0103 | 0.0844     | 0.8371 | 60.971              | 0.0388 | 16 2967    | 1.3036 | 79.901              | 0.0032 | 23.5000    | 1.5001 | 76.168              | 0.0466 |
| 1.9924 | 0.7466 | 44.698              | 0.0192 | 9.2046     | 0.7878 | 60.786              | 0.0424 | 16.4169    | 1.3744 | 80.525              | 0.0128 | 23.6292    | 1.3661 | 76.384              | 0.1045 |
| 2.1126 | 0.8947 | 47.183              | 0.0050 | 9.3248     | 0.8039 | 60.529              | 0.0162 | 16.5371    | 0.0797 | 65.686              | 1.8575 | 23.7494    | 1.4662 | 76.553              | 0.0510 |
| 2.2328 | 1.0238 | 46.480              | 0.0224 | 9.4450     | 0.8225 | 64.086              | 0.0180 | 16.6573    | 1.3475 | 80.478              | 0.0116 | 23.8696    | 1.4388 | 76.409              | 0.0485 |
| 2.3530 | 1.0736 | 46.379              | 0.0562 | 9.5653     | 0.7019 | 64.187              | 0.0218 | 16.7775    | 0.4281 | 61.426              | 0.2962 | 23.9898    | 1.7077 | 80.886              | 0.0260 |
| 2.4732 | 1.1645 | 46.630              | 0.0052 | 9.6855     | 0.6088 | 64.275              | 0.0287 | 16.8977    | 0.4477 | 61.056              | 0.1215 | 24.1100    | 1.8151 | 80.541              | 0.0225 |
| 2.5934 | 1.0678 | 48.663              | 0.0040 | 9.8057     | 0.6145 | 64.890              | 0.0141 | 17.0179    | 0.2827 | 61.426              | 0.2033 | 24.2302    | 2.3668 | 73.348              | 0.0195 |
| 2.7136 | 1.0305 | 48.688              | 0.0106 | 9.9259     | 0.4381 | 63.811              | 0.0271 | 17.1381    | 0.1740 | 62.110              | 0.7616 | 24.3504    | 0.3921 | 61.178              | 1.0847 |
| 2.8338 | 0.8528 | 48.475              | 0.0132 | 10.0461    | 0.4083 | 62.518              | 0.0834 | 17.2583    | 1.3948 | 81.059              | 0.0100 | 24.4706    | 0.7493 | 63.804              | 0.2599 |
| 2.9540 | 0.7928 | 48.061              | 0.0138 | 10.1663    | 0.4394 | 61.865              | 0.0489 | 17.3785    | 1.3420 | 80.808              | 0.0121 | 24.5908    | 0.5216 | 65.686              | 0.3403 |
| 3.0742 | 0.7882 | 48.387              | 0.0128 | 10.2865    | 0.5268 | 62.066              | 0.0442 | 17.4987    | 1.5211 | 81.718              | 0.0202 | 24.7110    | 1.9598 | 81.090              | 0.0310 |
| 3.1944 | 0.9366 | 54.931              | 0.0025 | 10.4067    | 0.4649 | 61.419              | 0.0299 | 17.6189    | 1.4320 | 81.153              | 0.0123 | 24.8312    | 1.8386 | 81.404              | 0.0182 |
| 3.3146 | 0.9044 | 55.559              | 0.0008 | 10.5269    | 0.5045 | 62.474              | 0.0500 | 17.7392    | 1.6014 | 80.855              | 0.0167 | 24.9514    | 1.5973 | 76.676              | 0.0686 |
| 3.4348 | 0.7988 | 54.690              | 0.0103 | 10.6471    | 0.5387 | 63.085              | 0.0181 | 17.8594    | 2.0584 | 81.169              | 0.0045 | 25.0716    | 1.5243 | 76.507              | 0.0762 |
| 3.5550 | 0.7964 | 55.245              | 0.0030 | 10.7673    | 0.4816 | 59.883              | 0.0429 | 17.9796    | 1.6786 | 74.772              | 0.0257 | 25.1918    | 1.6781 | 81.404              | 0.0199 |
| 3.6752 | 0.7783 | 55.872              | 0.0103 | 10.8875    | 0.6362 | 63.456              | 0.0141 | 18.0998    | 1.5177 | 74.844              | 0.0294 | 25.3120    | 1.7590 | 81.090              | 0.0345 |
| 3.7954 | 0.7552 | 55.487              | 0.0103 | 11.0077    | 1.7610 | 74.063              | 0.0262 | 18.2200    | 1.4590 | 75.086              | 0.0296 | 25.4322    | 1.6803 | 80.808              | 0.0121 |
| 3.9156 | 0.7860 | 55.318              | 0.0031 | 11.1279    | 1.6517 | 70.989              | 0.0125 | 18.3402    | 1.4940 | 77.896              | 0.0299 | 25.5524    | 1.7474 | 81.090              | 0.0144 |
| 4.0358 | 0.8079 | 56.161              | 0.0110 | 11.2481    | 1.5940 | 70.891              | 0.0143 | 18.4604    | 1.4701 | 80.525              | 0.0120 | 25.6726    | 1.7255 | 80.463              | 0.0087 |
| 4.1561 | 0.8333 | 57.972              | 0.0031 | 11.3683    | 1.6182 | 74.239              | 0.0032 | 18.5806    | 1.4708 | 79.600              | 0.0063 | 25.7928    | 2.2627 | 72.808              | 0.0091 |
| 4.2763 | 0.9184 | 58.815              | 0.0335 | 11.4885    | 0.1751 | 54.186              | 1.7358 | 18.7008    | 1.3310 | 75.882              | 0.0303 | 25.9131    | 0.8363 | 54.549              | 0.1451 |
| 4.3965 | 0.9584 | 53.533              | 0.0309 | 11.6087    | 0.3574 | 57.903              | 0.3790 | 18.8210    | 0.4194 | 62.690              | 0.4433 | 26.0333    | 0.6343 | 53.608              | 0.2089 |
| 4.5167 | 0.9705 | 54.273              | 0.1037 | 11.7289    | 0.3781 | 58.032              | 0.3505 | 18.9412    | 1.3066 | 76.773              | 0.0201 | 26.1535    | 0.2695 | 51.073              | 0.4706 |
| 4.6369 | 1.0346 | 59.901              | 0.0095 | 11.8491    | 0.3187 | 57.348              | 0.3979 | 19.0614    | 1.3162 | 79.584              | 0.0137 | 26.2737    | 0.5325 | 59.255              | 0.1759 |
| 4.7571 | 0.9704 | 55.189              | 0.0330 | 11.9693    | 0.2808 | 57.517              | 0.5159 | 19.1816    | 1.3875 | 77.363              | 0.0137 | 26.3939    | 1.8422 | 80.431              | 0.0100 |
| 4.8773 | 0.8876 | 56.331              | 0.0376 | 12.0895    | 1.9957 | 71.986              | 0.0183 | 19.3018    | 1.3858 | 80.400              | 0.0093 | 26.5141    | 1.6762 | 73.937              | 0.0735 |
| 4.9975 | 0.9164 | 56.407              | 0.0419 | 12.2097    | 1.8833 | 71.221              | 0.0114 | 19.4220    | 1.3598 | 80.369              | 0.0087 | 26.6343    | 1.2903 | 76.409              | 0.0540 |
| 5.1177 | 0.8453 | 61.466              | 0.0493 | 12.3300    | 1.8677 | 72.030              | 0.0102 | 19.5422    | 1.3296 | 80.729              | 0.0222 | 26.7545    | 1.2770 | 79.013              | 0.0214 |
| 5.2379 | 0.7167 | 58.063              | 0.0582 | 12.4502    | 1.9834 | 75.506              | 0.0045 | 19.6624    | 1.3992 | 80.290              | 0.0070 | 26.8747    | 1.3042 | 80.933              | 0.0331 |
| 5.3581 | 0.7098 | 58.051              | 0.0212 | 12.5704    | 2.0405 | 74.188              | 0.0068 | 19.7826    | 1.3192 | 80.212              | 0.0133 | 26.9949    | 1.4595 | 81.075              | 0.0428 |
| 5.4783 | 0.7089 | 59.004              | 0.0588 | 12.6906    | 2.0379 | 74.502              | 0.0068 | 19.9028    | 1.3674 | 80.055              | 0.0184 | 27.1151    | 1.2915 | 80.792              | 0.0511 |
| 5.5985 | 0.7734 | 62.383              | 0.0199 | 12.8108    | 2.0204 | 74.276              | 0.0074 | 20.0230    | 1.3737 | 77.677              | 0.0139 | 27.2353    | 1.1786 | 80.871              | 0.0225 |
| 5.7187 | 0.6680 | 61.078              | 0.0285 | 12.9310    | 1.9232 | 74.859              | 0.0075 | 20.1432    | 1.3782 | 79.929              | 0.0317 | 27.3555    | 1.2460 | 81.122              | 0.0201 |
| 5.8389 | 0.7244 | 61.247              | 0.0250 | 13.0512    | 2.0001 | 74.276              | 0.0075 | 20.2634    | 1.4266 | 76.698              | 0.0202 | 27.4757    | 1.1212 | 78.562              | 0.0364 |
| 5.9591 | 0.8240 | 61.222              | 0.0244 | 13.1714    | 1.9396 | 77.294              | 0.0017 | 20.3836    | 1.3112 | 76.152              | 0.0297 | 27.5959    | 1.1397 | 78.875              | 0.0962 |
| 6.0793 | 0.9394 | 64.579              | 0.0057 | 13.2916    | 1.8793 | 77.294              | 0.0036 | 20.5039    | 1.0554 | 75.700              | 0.0423 | 27.7161    | 1.0863 | 79.007              | 0.1101 |
| 6.1995 | 0.9013 | 60.346              | 0.0502 | 13.4118    | 1.8679 | 77.576              | 0.0069 | 20.6241    | 1.1605 | 75.707              | 0.0152 | 27.8363    | 1.0501 | 79.007              | 0.0619 |
| 6.3197 | 0.8907 | 61.275              | 0.0188 | 13.5320    | 1.9409 | 77.843              | 0.0059 | 20.7443    | 1.1608 | 76.108              | 0.0164 | 27.9565    | 1.0379 | 78.964              | 0.0187 |
| 6.4399 | 0.9094 | 65.639              | 0.0199 | 13.6522    | 1.7157 | 77.545              | 0.0069 | 20.8645    | 1.2252 | 77.451              | 0.0168 | 28.0767    | 1.1016 | 78.875              | 0.0291 |
| 6.5601 | 0.8965 | 65.809              | 0.0068 | 13.7724    | 1.8117 | 77.561              | 0.0068 | 20.9847    | 1.3130 | 77.583              | 0.0340 | 28.1969    | 1.0993 | 78.336              | 0.0572 |
| 6.6803 | 0.9241 | 65.398              | 0.0073 | 13.8926    | 1.9316 | 77.278              | 0.0069 | 21.1049    | 1.4544 | 78.166              | 0.0445 | 28.3171    | 1.1614 | 78.699              | 0.0842 |
| 6.8005 | 1.0060 | 65.614              | 0.0200 | 14.0128    | 2.0784 | 74.458              | 0.0284 | 21.2251    | 1.4562 | 77.721              | 0.0268 | 28.4373    | 1.1157 | 78.518              | 0.0508 |
| 6.9208 | 1.0575 | 61.627              | 0.0241 | 14.1330    | 1.9594 | 77.357              | 0.0083 | 21.3453    | 1.4386 | 77.407              | 0.0271 | 28.5575    | 1.2202 | 77.000              | 0.0893 |

Table 1. PDF Parameters for 241 frequencies between 1.15MHz and 30 MHz.

| 7.0410 | 1.1428 | 69.463 | 0.0096 | 14.2532 | 1.8488 | 78.000 | 0.0092 | 21.4655 | 1.3724 | 78.210 | 0.0636 | 28.6778 | 1.0509 | 79.051 | 0.0641 |
|--------|--------|--------|--------|---------|--------|--------|--------|---------|--------|--------|--------|---------|--------|--------|--------|
| 7.1612 | 0.9522 | 65.586 | 0.0136 | 14.3734 | 1.6443 | 78.361 | 0.0059 | 21.5857 | 1.3676 | 78.160 | 0.0473 | 28.7980 | 0.9528 | 78.556 | 0.0785 |
| 7.2814 | 0.9058 | 65.005 | 0.0169 | 14.4936 | 1.3975 | 78.078 | 0.0148 | 21.7059 | 1.3875 | 78.562 | 0.0231 | 28.9182 | 0.9172 | 78.556 | 0.0815 |
| 7.4016 | 1.0350 | 65.200 | 0.0122 | 14.6138 | 1.4484 | 78.376 | 0.0137 | 21.8261 | 1.4926 | 77.633 | 0.0494 | 29.0384 | 0.9318 | 78.825 | 0.0775 |
| 7.5218 | 1.2456 | 62.756 | 0.0234 | 14.7340 | 1.8749 | 70.035 | 0.0404 | 21.9463 | 1.4616 | 78.072 | 0.0187 | 29.1586 | 0.9469 | 79.365 | 0.0398 |
| 7.6420 | 0.9352 | 51.182 | 0.6682 | 14.8542 | 1.9446 | 69.244 | 0.0134 | 22.0665 | 1.5001 | 75.446 | 0.0341 | 29.2788 | 0.8845 | 78.781 | 0.0444 |
| 7.7622 | 1.2224 | 63.735 | 0.0072 | 14.9744 | 1.3320 | 61.921 | 0.2098 | 22.1867 | 1.4802 | 75.832 | 0.0680 | 29.3990 | 0.8786 | 79.095 | 0.0447 |
| 7.8824 | 0.9848 | 60.610 | 0.0600 | 15.0947 | 1.3147 | 62.235 | 0.2126 | 22.3069 | 1.4108 | 75.663 | 0.0218 | 29.5192 | 0.8541 | 78.825 | 0.0478 |
| 8.0026 | 0.8836 | 60.554 | 0.0697 | 15.2149 | 0.3586 | 59.873 | 0.3170 | 22.4271 | 1.4565 | 75.663 | 0.0116 | 29.6394 | 0.8495 | 78.556 | 0.0501 |
| 8.1228 | 0.8527 | 60.183 | 0.0284 | 15.3351 | 0.0572 | 59.456 | 6.3227 | 22.5473 | 1.4429 | 75.180 | 0.0231 | 29.7596 | 0.8251 | 78.380 | 0.0247 |
| 8.2430 | 0.8950 | 60.369 | 0.0702 | 15.4553 | 1.4223 | 80.243 | 0.0134 | 22.6675 | 1.5413 | 76.024 | 0.0244 | 29.8798 | 0.5271 | 78.204 | 0.0321 |
| 30     | 1.0051 | 79.914 | 0.0168 |         |        |        |        |         |        |        |        |         |        |        |        |

The exact weightiness of the  ${\sigma_g}^2$  and  ${\sigma_I}^2$  parameters is shown in fig. 1 where both of them are plotted simultaneously with all of the noise measurements. The lower dark line is  $\sigma_g^2$  and the upper dark line is  $\sigma_{I}^{2}$ . Neither the one nor the other can be considered as average values of the noise power for every frequency.  $\sigma_I^2$  does not fluctuate as much as  $\sigma_g^2$ does. The explanation is simple. The frequencies where  $\sigma_g^2$  exhibit notches are probably frequencies of radio stations (i.e. narrowband noise). As radio stations have almost constant transmission power their power is added to the background noise level of the power lines because the model cannot distinguish it from the underlying background noise as the latter varies by time in terms of hours just like the power originating from the radio stations. This fact has as consequence the model to be slightly misled and the impulsive noise level to be stronger than it is actually at the frequencies where radio stations transmit. From Fig. 1 it is evident that at the frequencies where  $\sigma_g^2$  has great notches, the impulsive noise  $\sigma_1^2$  also seems to be reinforced. The reader can easily see from equation (2) that for certain  $\Gamma_A$  when  $\sigma_g^2$  is increased,  $\sigma_I^2$  is also increased.

Finally, the greater the A parameter the more frequent the impulsive noise is. Hence, from Table 1 we can distinguish the frequencies that impulsive noise prefers and hits more frequently. Frequencies greater than 11MHz suffers from greater impulsive noise traffic.

### 4 Validity Limits of the Power Line Channel Noise Models

In this section some comments are made about the validity limits of the power line channel models. It was observed that the strong and almost constant radio station's emission affects negatively the operation of the models. As already mentioned in section 3 regarding these strong power emissions as constituents of the gaussian component of the power line noise, the impulsive noise power is depicted stronger than it is actually. This was observed when we plotted together the histogram of the noise samples (actual p.d.f.) with the p.d.f. originated from Middleton's formula. Although, the left part of the p.d.f. matched well, the right part could not fit perfectly, even when 100 members of the summation of equation 1 was used. Those frequencies present greater R.M.S.E. (root mean square error) between the smoothing splines curve approximating the actual p.d.f. and the curve from equation 1, compared to the R.M.S.E. in frequencies where there were no radio stations transmissions.

On the other hand, due to the significant correlation that the noise samples have, we can extract noise models for frequencies that are not included in Table 1 by means of interpolation. Obviously, the more narrow the frequency step of the noise measurements is, the more accurate interpolation can be.

The Middleton's canonical formula for class A noise was constructed to describe noise phenomena in the time domain in the first place. In this paper it was used in the frequency domain as it was found, after statistical analysis of the data measured in the frequency domain, that equation 1 can describe sufficiently the p.d.f. of the noise spectral density for every measured frequency. The p.d.f.'s parameters extraction is the major contribution of this study.

### **5** Conclusions and Further Research

In this paper a power-line channel noise model is proposed. It is based entirely on measurements in the frequency domain since OFDM, is a prominent candidate for power line communications. The model is in fact a family of parallel models in the frequencies of interest. The frequency distance between two models is 120.2KHz. We used thousands of spectrum analyzer sweeps in the frequency range of interest. The family of the noise models must be enhanced with new members. This can be achieved shortening the frequency distance and perform a new campaign of measurements. The narrower the frequency distance is, the more accurate the power line model can be. The enhanced p.d.f.'s family will be attained shortly. Additionally, the dependency of the A, s<sub>g</sub>, s<sub>i</sub>, from the frequency is a next step in our research.

#### References:

[1] R. Van Nee and R. Prasad, *OFDM for wireless multimedia communications*, Artech House, 2000.

[2] H. Philipps, Development of a Statistical Model for Powerline Communication Channels, in *Proc. Int. Symp. on Power Line Commun. and its Applications*, 2000, pp. 153-160.

[3] C. Assimakopoulos and F-N. Pavlidou, Measurements and Modeling of In-House Power Lines Installation for Broadband Communications, in *Proc. Int. Symp. on Power Line Commun. and its Applications*, 2001, pp. 73-78.

[4] C. Assimakopoulos, P.L. Katsis, F.-N. Pavlidou, D. Obradovic, and M. Obradovic, XDSL Techniques for power line communications, in *Proc. Int. Symp. on Power Line Commun. and its Applications*, 2003, pp. 21-25.

Diez-del J.T. [5] C. Corripio, L. Rio, Entrambasaguas-Munoz, Indoor Power Line Communications: Channel Modeling and Measurements, in Proc. Int. Symp. on Power Line Commun. and its Applications, 2000, pp. 117-122.

[6] T. Esmailian, F.R. Kschischang and P.G. Gulak, Characteristics of in-building power lines at high frequencies and their channel capacity, in *Proc. Int. Symp. on Power Line Commun. and its Applications*, 2000, pp. 52-59.

[7] M. Zimmermann and C. Dostert, An analysis of the broadband noise scenario in powerline networks, in *Proc. Int. Symp. on Power Line Commun. and its Applications*, 2000, pp. 131-138.

[8] R.M. Vines, H.J. Trussell, L. Gale, and J.B. O'Neal, Noise on residential power distribution circuits, *IEEE Trans. Electromag. Compat*, Vol.26, Nov. 1984, pp 161-168.

[9] E. Yavuz, F. Kural, N. Coban, B. Ercan and M. Safak, Modelling of power lines for digital communications, in *Proc. Int. Symp. on Power Line Commun. and its Applications*, 2000, pp. 161-168.

[10] C. de Boor, *A practical guide to splines*, Springer-Verlag, 1978.

[11] L.A. Berry, Understanding Middleton's canonical formula for class A noise, *IEEE Trans. Electomag. Compat.*, Vol.23, 1981, pp. 337-344.

[12] D. Middleton, Statistical-physical models of electromagnetic interference, *IEEE Trans. Electomag. Compat.*, Vol.19, 1977, pp. 106-127.