Bitmap-Tree Indexing for Set Operations on Free Text

Ilias Nitsos, Georgios Evangelidis
Department of Applied Informatics
University of Macedonia
156 Egnatia Str., 54006 Thessaloniki, Greece
{nitsos, gevan} @uom.gr

Abstract

In the present study we report on our implementation of
a hybrid-indexing scheme (Bitmap-Tree) that combines the
advantages of bitmap indexing and file inversion. The re-
sults we obtained are compared to those of the compressed
inverted file index. Both storage overhead and query pro-
cessing efficiency are taken into consideration. The pro-
posed new method is shown to excel in handling queries
involving set operations. For general-purpose user queries,
the Bitmap-Tree is shown to perform as good as the com-
pressed inverted file index.

1. Introduction

Information processing environments range from the tra-
ditional database management system (DBMS), to textbase
and hypertext IR systems. The inverted file index (IF) is a
popular indexing scheme for textbases. Moreover, its com-
pressed variation is reported to excel both in space and time
savings, achieving performance improvements of the order
of 80% when compared to uncompressed indexes [2].

Bitmap index file organizations utilize binary patterns.
Each one of the latter indexes a distinct logical unit of in-
formation (e.g. a document). In each one binary pattern, bit
positions are set to 1(0) in accordance to the presence (ab-
sence) of the corresponding index term [1]. Bitmap index-
ing has some clear advantages over file inversion that make
it the method of choice for specialized application environ-
ments.

In the present study, we report on a compressed hybrid-
indexing scheme: the Bitmap-Tree. The proposed new index
structure is found to combine advantages from both bitmap
indexing and file inversion. Bitmap and inverted index type
components are gracefully integrated into a single (hybrid)
compressed index structure. The scheme may be tailored for
improved efficiency in processing set operations.

Dimitris Dervos
Department of Information Technology
TEI of Thessaloniki
P.O. Box 14561, 54101 Thessaloniki, Greece
dad @it.teithe.gr

2. The Bitmap-Tree Structure

The Bitmap-Tree (BT) is a binary tree structure. In the
Bitmap-Tree indexing scheme, each distinct word of the
textbase is mapped to a unique number in [0,...,V —
1], where V' is the total number of distinct words in the
textbase. For every one document in the textbase a docu-
ment bitmap is constructed. Initially all its bits are set to
0 and then the bit positions that correspond to words con-
tained in the document are set to 1.

Once a bitmap has been created for a document d, it is in-
serted into the binary Bitmap-Tree structure. Starting from
the root, if the number of 1s in the bitmap of document d is
greater than the number of Os, then the document bitmap is
stored under the root node, alongside with the correspond-
ing document identifier d, and the algorithm terminates. On
the other hand, if the number of 1s is less than or equal to
the number of 0s, the document bitmap is divided into two
equally sized sub-bitmaps. The algorithm proceeds recur-
sively and considers each one of the two halves against the
left- and the right- subtrees of the root, respectively.

3. Experimental Results

For specialized application environments calling for I/O
intensive set oriented query processing operations, BT is
measured to be up to 20 times faster than IF. For queries
involving terms drawn from the general textbase vocabu-
lary, BT performs similarly to IF. The overall gain comes at
the cost of a small increase in storage overhead.

References

[1] Bookstein A., Klein S.T.: “Using Bitmaps for Medium Sized
Information Retrieval Systems®, Information Processing &
Management, Vol. 26, No. 4, pp. 525-533, 1990.

[2] Zobel J., Moffat A. and Ramamohanarao K., “Inverted Files
Versus Signature Files for Text Indexing”, ACM Transac-
tions on Database Systems, Vol.23, No.4, pp. 453-490, Dec.
1998.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE



