
International Hellenic University
Department of Information and Electronic Engineering

MASTER THESIS
Evolduo: A platform for collaborative musical

synthesis using evolutionary algorithms

Student
Konstantinos Georgiadis
Reg. Number: 2/2019

Supervisor
Panagiotis Adamidis

Professor

June, 2023

Thesis title: “Evolduo: A platform for collaborative musical synthesis using evolutionary algorithms”
Thesis id: 21284

Student name: Konstantinos Georgiadis
Supervisor name: Panagiotis Adamidis
Thesis assignment date: 07-08-2021
Thesis completion date 10-06-2023

I confirm that I am the author of this work and that any assistance I received in its preparation has
been fully acknowledged and referenced in the work. Additionally, I have documented any sources
from which I used data, ideas, images, and text, whether they are cited verbatim or paraphrased.
Furthermore, I confirm that this work was prepared by me personally, specifically as a thesis in the
Department of Computer Engineering and Electronic Systems at International University of Greece.

This thesis is intellectual property of the student Konstantinos Georgiadis who completed it. As
part of the open access policy, the author/creator grants the International University of Greece a
license to reproduce, loan, present to the public, and digitally distribute the work worldwide, in elec-
tronic form and in any medium, for educational and research purposes, without charge. Open access
to the full text of the work does not in any way imply the transfer of intellectual property rights of the
author/creator, nor does it allow for reproduction, republication, copying, selling, commercial use,
distribution, publication, downloading, uploading, translation, modification in any way, or summary
of the work, without the explicit prior written consent of the author/creator.

Approval of this thesis by the Department of Computer Engineering and Electronic Systems of
the International University of Greece does not necessarily imply acceptance of the author’s views
on behalf of the department.

«To my wife Kiki, for her patience and support»

Preface

Mymotivation for doing this work is multi-faceted and stems from a combination of fac-
tors. The opportunity to return to an area where I previously worked 15 years ago is exciting,
as it allows me to revisit my past experiences and explore how the field has developed since
then. Additionally, the chance to collaborate with a professor with whom I have a great work-
ing relationship is highly motivating, as I value his expertise and perspective. Moreover, the
focus of the research on art is a source of inspiration for me, as I am deeply interested in
exploring the ways this can influence and impact creative expression. By combining these
factors, I am driven to pursue this research with dedication and enthusiasm, as I believe it
has the potential to make a meaningful contribution to the field of generative art.

v

Abstract

This postgraduate thesis presents a less common approach to artifical intelligence driven
music synthesis. A web application is created that allows multiple users to collaboratively
generate music through an evolutionary process. The system uses an evolutionary algorithm
to evolve populations of melodies that attempt to match a predefined chord progression.
Users can provide feedback on the musical output, which alter system’s evaluation. More
than 30 people used this platform and provided ratings. The findings of this study indicate
that while it is possible to create musically pleasingmelodies without extensive knowledge of
complex algorithms, developing a user friendly interface and process is a more complicated
task. The results suggest that the platform has the potential to facilitate collaborative music
generation and could be used in various contexts, such as composition and live performances.
Consequently, this study provides a basis for a potential user friendly and interactive web
application for musical synthesis.

vi

Acknowledgements

I would like to express my heartfelt gratitude to my wife, Kiki, for her unwavering sup-
port and understanding throughout this project. Her love and encouragement kept me going,
and I couldn’t have done this without her.
I would like to thank Professor Panagiotis Adamidis for his invaluable support and guid-
ance. His exprerience was intrumental in shaping this work to something meaningful and
constrained enough to be impelemented.
I am indebted toUI expert KonstantinosKaloutas for his valuable contributions to the project.
His feedback and help on the UI were critical in creating an intuitive and user-friendly ex-
perience.
I am also grateful to musician and painter Angelos Krallis for providing feedback on the mu-
sic generated by this project and for creating the cover drawing for this thesis. His insights
and suggestions helped to enhance the musical output and the evolution of this project.
I would also like to thank my friend Stelios Mikedis for his extensive feedback and for the
moments we were sharing our academic work updates.
Finally, I would like to thank all the people who used the project and provided feedback.
Their input was immensely valuable, and it helped me to understand how the project could
be improved in the future.

vii

Contents

Preface . v
Abstract . vi
Acknowledgements . vii
Table of Contents . viii
List of Figures . xi
List of Code . xi
List of Tables . xiii

1 Introduction 1

2 Web Development 2
2.1 Clojure . 2

2.1.1 Language characteristics . 2
2.1.2 Language Primer . 3
2.1.3 REPL-driven development . 6
2.1.4 Benefits . 6

2.2 Design decisions and considerations . 6
2.3 Initial thoughts and prototyping . 7

2.3.1 Music representation . 7
2.3.2 Database . 7
2.3.3 Application modularization . 8

2.4 Application Architecture . 9
2.4.1 Model-View-Controller (MVC) . 9
2.4.2 Entity-relationship model . 9
2.4.3 Styling and interactivity . 10
2.4.4 User Actions and Management . 11

2.5 GDPR . 11
2.6 Security and Privacy . 11

2.6.1 Firewall . 12
2.6.2 Captcha . 13

2.7 Error tracking and performance . 14
2.8 Development and Deployment . 15

2.8.1 Development . 15
2.8.2 Deployment . 16

2.9 Libraries and tools . 16
2.9.1 Integrant . 16
2.9.2 Honeysql . 17
2.9.3 Malli . 17

2.10 Infrastructure . 18
2.10.1 Nginx and HTTPs . 19
2.10.2 Databases . 19

viii

2.11 License . 19

3 Evolutionary Music 21
3.1 Evolutionary algorithms . 21
3.2 EvolTrio . 21
3.3 Chickn . 21
3.4 Music . 23

3.4.1 Music theory basics . 23
3.4.2 ABC notation . 24
3.4.3 Chord construction . 24
3.4.4 Chord construction process . 25

3.5 Chromosome structure . 27
3.6 Genetic operators . 28

3.6.1 Helpers . 28
3.6.2 Crossover . 29
3.6.3 Mutation . 30

3.7 Fixing broken chromosomes . 32
3.8 Fitness Function . 33

3.8.1 Analyzing chromosomes . 33
3.8.2 Scale score . 34
3.8.3 Measure’s last note score . 34
3.8.4 Note/Chord score . 35
3.8.5 Adjusting fitness score . 36

3.9 Tackling bias . 37

4 Feedback and Results 39
4.1 Announcement . 39
4.2 Feedback . 40

4.2.1 User Interface . 40
4.2.2 Music . 40
4.2.3 Standalone . 41
4.2.4 Configuration . 41

4.3 Results . 42

5 Discussion and Future Work 46
5.1 Discussion . 46

5.1.1 Evolutionary Algorithms . 46
5.1.2 Fitness . 46
5.1.3 Presets . 46
5.1.4 ABC and browser interactivity . 46

5.2 Challenges . 47
5.2.1 Complex configuration . 47
5.2.2 Time consuming . 47
5.2.3 Keeping users engaged . 47

ix

5.2.4 What should an AI music community look like 48
5.2.5 Supporting a software project . 48

5.3 Future Work . 48
5.3.1 EA settings . 48
5.3.2 Fixing broken chromosomes . 49
5.3.3 Fitness . 49
5.3.4 Music . 50
5.3.5 User experience and collaboration . 51
5.3.6 Infrastructure and monitoring . 52
5.3.7 Evolduo Live . 52
5.3.8 Different user needs . 53
5.3.9 Moving forward . 54

References 55

A Useful SQL queries 56

x

List of Figures
1 Database Schema . 10
2 Infrastructure diagram . 15
3 EvolTrio main view . 22
4 C major chords . 25
5 C major degrees / Notes / Pitches . 25
6 Broken chromosome . 32
7 Rating options . 36
8 User registrations per month . 39
9 Created evolutions per month . 40
10 Jump to iteration component . 40
11 Evolution #78 progress . 43
12 Evolution #71 progress . 43
13 Evolution #70 progress . 43
14 User rating distribution . 44
15 User rating aggregation per evolution progress (balanced) 44
16 User rating aggregation at first 10% of the process (balanced) 45

xi

List of Code

1 Hello World . 3
2 Function definition . 3
3 Primitives . 4
4 Data Structures . 4
5 Data Structure Operations . 5
6 Collection Processing . 5
7 Evolduo Jail . 12
8 Evolduo Jail Filter . 13
9 Evolduo Nginx Proxy . 13
10 Evolduo Fail2ban Client . 13
11 Evolduo System Config . 17
12 Honeysql example . 17
13 Malli example . 18
14 Chickn Example . 23
15 Chickn Example Cont. 23
16 ABC example . 24
17 Ionian/Major intervals . 26
18 Major notes calcuation . 26
19 Major notes calcuation cont. 27
20 Key to pitch conversion . 27
21 Chord notes generation . 27
22 Chromosome structure . 28
23 Calculating note times . 29
24 Calculate note times . 29
25 Crossover example . 29
26 Mutation operators . 30
27 Split note helper function . 30
28 Split random note . 31
29 Splitting random note example . 31
30 Chromosome #2 . 31
31 Merge notes example . 31
32 Broken Chromosome Demo . 32
33 Invalid Measure Times . 32
34 Fixing Invalid Measure Times . 33
35 Analyzing a chromosome . 34
36 Calculating last note score . 35
37 Calcuating all last notes scores . 35
38 Chord notes score . 36
39 Adjusting fitness rating . 37
40 User rating distribution SQL . 56

xii

41 User rating aggregration per evolution progress SQL 56
42 User rating at first 10% of the process SQL . 56

xiii

List of Tables
1 Usage statistics . 42
2 Sample evolutions . 42

xiv

1 Introduction

Chapter 1: Introduction
Musical composition is a complex and creative process that involves the creation of new music using
a variety of techniques and tools. In recent years, evolutionary algorithms (EAs) have emerged as a
powerful tool for musical composition, and they have been used to create a wide range of music in
different styles and genres.

This thesis aims to investigate the potential of evolutionary algorithms in producing music that pos-
sesses two distinct characteristics - being pleasant to the ear and easy to remember. The study will delve
into the development of methods that can effectively incorporate these traits into the music generated by
evolutionary algorithms. Furthermore, the evaluation of these methods will also be conducted to deter-
mine their effectiveness in achieving the desired outcomes.

The use of evolutionary algorithms for musical composition offers many advantages over traditional
methods, including the ability to search large spaces of musical possibilities, the ability to incorporate
constraints and preferences into the music generation process, and the ability to generate a diverse range
of musical ideas.

This thesis builds upon previous work done in this particular field, drawing on the author’s experience
in developing web applications. It aims to provide detailed information of how to design and implement
a web-based application utilizing Clojure to generate music using evolutionary algorithms.

This work is divided into four parts to provide a systematic and thorough analysis.
Section 2 focuses on the development of the web application, encompassing an exploration of Clojure

fundamentals and the benefits of using a functional language for this work. Additionally, it documents
the architecture of the web application, infrastructure details, libraries used and license details.

In Section 3 an introductory exploration of Evolutionary algorithms is presented, including the au-
thor’s prior contributions in this domain, the libraries used for the implementation, fundamental principles
of music theory, the structure of chromosomes, and detailed considerations of fitness function. This sec-
tion further provides the relationships and connections between these elements in the process of creating
algorithmically generated music.

Section 4 presents usage results of the application and discusses the feedback received from users.
Section 5 discusses the selection of tools and methods employed in the project, assessing their ef-

fectiveness. It also documents the various challenges encountered and explores potential ways to move
forward.

As a final note we should keep in mind that the main motivation behind this work is to accomplish
something memorable. Just as Joe Pass explains in his instructional video Jazz Lines[1] “Music that
we can’t remember isn’t worth playing”. The goal is to produce compositions that not only possess the
potential to be enjoyed by listeners but also have the ability to be remembered long after they have been
experienced.

1

Chapter 2

Chapter 2: Web Development

Evolduo is a web application written in the Clojure programming language. It consists of two logical
blocks: web and music. The music block comprises two components, music harmony and evolutionary
algorithms, which are integrated into the application. If this project reaches maturity, the music compo-
nent is extracted into a standalone library, enabling other users to use it.

This chapter covers the fundamentals of the Clojure language, the application architecture, a brief
explanation of the tools employed, and discuss the process of deploying the application to a virtual private
server (VPS).

2.1 Clojure

This section provides some background information on the Clojure programming language, followed by
a primer (2.1.2) section which should help the reader understand the code examples presented in the rest
of this work. This is by no means a full language guide and may be inadequate for those who have no
previous exposure to code from the Lisp family of languages (e.g. Scheme) or other functional languages
(e.g. Ocaml). Readers who are familiar with Clojure can skip this section.

2.1.1 Language characteristics

Clojure is a functional programming language designed by Rich Hickey in 2005 and released in 2007. It
is designed to be hosted, making it possible to run Clojure code across different runtime environments.
Initially, Clojure targeted the Java Virtual Machine (JVM) and the Common Language Runtime (CLR),
but the JVM quickly became the primary supported target, while the CLR was supported by the com-
munity. Clojurescript is the Clojure implementation that runs on the Javascript runtime. It is the most
popular runtime after the JVM and can target browsers and node.js runtimes. Recently, a Clojure dialect
has also targeted the Dart runtime 1.

Clojure is dynamically typed, which means that types don’t have to be specified, although type hints
can be provided to improve performance. Belonging to the Lisp family of languages, it has a Lisp-style
syntax that is characterized by its simplicity, expressiveness, and flexibility.

One of the key features of Clojure is its support for functional immutable data structures. These
data structures cannot be modified once they have been created. This makes it easier to write correct,
efficient, and concurrent programs in Clojure, as it eliminates the need for mutable state and the associated
challenges of managing and coordinating access to shared state.

Despite being less popular, after 15 years since its release, Clojure has been successfully adopted by
many companies and large organizations.

As a final note, it should be mentioned that Clojure follows Java’s approach to remain backwards
compatible. After 11 major releases, code is still compatible with version 1, which is essential for the
maintainability and stability of a software project[2].

1https://github.com/Tensegritics/ClojureDart

2

https://github.com/Tensegritics/ClojureDart

2 Web Development

2.1.2 Language Primer

Clojure has concise syntax and experimentation in the Read Eval Print Loop (REPL) is very common.
Installation instructions can be found on the official site2 and once installed the REPL can be launched
with the clojure command.

As in many cases, we will start by showing a “Hello World” example in the REPL (Listing 1):

$ clojure

Clojure 1.11.1

user=> "Hello World"

"Hello World"

Listing 1: Hello World

Here, the Clojure REPL is started and the "Hello World" string is provided. Since everything is an
expression, the same string "Hello World" is returned as it evaluates to itself. The prompt (user =>)
indicates that we are in the user namespace. Namespaces in Clojure are equivalent to Java packages, but
in this language, we can navigate between them and evaluate expressionswithout requiring the declaration
of the fully qualified namespace path.
A more complex example would involve the creation and execution of a function, as shown in the fol-
lowing snippet (Listing 2):

(defn add-1 [x]

(inc x))

#'user/add-1

(add-1 1)

==> 2

Listing 2: Function definition

Here, a function that accepts a single parameter (x) is defined. The definition returns a symbol that points
to the created function, which we can then call and provide the argument 1.
It is noteworthy that the function arguments are defined using a vector ([x]), rather than a list as is more
common in Lisp family of languages. This reduces the number of parentheses and makes the code more
readable.
To gain an appreciation for the significance of Clojure being hosted, we can examine

the types of some primitives by utilizing the type function (Listing 3):

user=> (type 1)

java.lang.Long

user=> (type "foo")

java.lang.String

user=> (type :foo)

clojure.lang.Keyword

user=> (type 'foo)

2https://clojure.org/guides/install_clojure

3

https://clojure.org/guides/install_clojure

Chapter 2

clojure.lang.Symbol

user=> (type (/ 1 3))

clojure.lang.Ratio

Listing 3: Primitives

We can observe that Clojure utilizes Java’s numeric types for numbers (the same applies to Ints and
Floats). It defaults to the higher precision numbers and will coerce to BigInt if necessary to avoid losing
precision. This, along with the addition of the Ratio type, can be helpful in applications that require
numeric computation and where precision is important.
One of the constructs that sets Clojure apart from other languages is its use of Persistent Immutable Data
Structures 3. While this comes at the expense of some overhead, these data structures offer operations
that can be beneficial in many ways, ranging from simplicity to effective concurrency.
Below is a code snippet that demonstrates some of the most commonly used data structures (Listing 4):

user=> (type [1 2 3])

clojure.lang.PersistentVector

user=> (type {:a 1 :b 2})

clojure.lang.PersistentArrayMap

user=> (type #{1 2 3})

clojure.lang.PersistentHashSet

user=> (type '(1 2 3))

clojure.lang.PersistentList

Listing 4: Data Structures

All of these collections evaluate to themselves except for lists, which is the collection that Clojure code
is structured with. This is why the list needs to be quoted (’) to prevent evaluation.
We can see that there is a concise way of defining all the major collections with the help of the reader 4.
Usage of Sets is also quite common in Clojure as Sets are commonly used to check the presence.
Clojure developers prefer structuring code information using maps and vectors rather than classes, some-
thing that can result in less code. Additionally, those constructs can leverage many functions that are
built into the core of the language.
The following snippet shows some common operations on data structures (Listing 5):

;; lines starting with selicolons are comments

;; get the item at index 1

(nth [1 2 3 4] 1)

2

;; same as above but now using the vector as a function instead of

;; function nth

user=> ([1 2 3 4] 1)

2

;; using nth will trigger the known in the Java world IndexOutOfBoundsException

3https://clojure.org/reference/data_structures
4https://clojure.org/reference/reader

4

https://clojure.org/reference/data_structures
https://clojure.org/reference/reader

2 Web Development

user=> (nth [1 2 3 4] 5)

Execution error (IndexOutOfBoundsException) at user/eval167 (REPL:1).

null

;; using get will not

user=> (get [1 2 3 4 5] 5)

nil

;; using the 3-arity get function and providing a fallback

;; not the out of bounds case (-1)

user=> (get [1 2 3 4 5] 5 -1)

-1

;; using sets to check the presense

user=> (#{1 2 3 4} 3)

3

user=> (#{1 2 3 4} 5)

nil

Listing 5: Data Structure Operations

The final example shows what collection processing looks like (Listing 6):

user=> (apply + (map #(* 2 %) (filter odd? (range 10))))

50

;; we can write the same using the threading macro

;; to make the code more readable

user=> (->> (range 10)

(filter odd?)

(map #(* 2 %))

(apply +))

50

;; if we expand the threading macro we see that the

;; the code that is actually used if very similar to the

;; one we wrote initially

user=> (macroexpand '(->> (range 10)

(filter odd?)

(map #(* 2 %))

(apply +)))

(apply + (map (fn* [p1__2#] (* 2 p1__2#)) (filter odd? (range 10))))

Listing 6: Collection Processing

This final example effectively illustrates one of the core design principles of the Clojure language which
is to remain compact while providing a wide range of built-in functions that users can easily leverage.
This allows users to create their own functions that are not limited to specific types defined previously,
nor do they share the same complexity of parameterized data types seen in languages such as Java or
Scala.

5

Chapter 2

2.1.3 REPL-driven development

Clojure is a programming language that is well-suited for web development, and it offers a number of
features and tools that can help to make the development process more efficient and effective. One such
feature is its REPL-driven development, which allows developers to make changes to their code, evaluate
it and see the results in real time without having to restart the web server.
The REPL-driven development can save a lot of time and effort, as it allows the developer to iterate
quickly and make changes to the code without having to interrupt their workflow. It is one of the many
features of Clojure that makes it a popular choice for web development.

2.1.4 Benefits

There are several benefits that come with choosing Clojure as the implementation language for this
project.
Clojure code tends to be smaller than implementations in other languages, particularly those in the AL-
GOL family such as Java or C#. Smaller code often means less development time and fewer bugs.
Since this project involves music processing and evolutionary algorithms, an expressive language with
strong data processing functionality like Clojure is highly advantageous.
REPL-driven development facilitates experimentation, which saves time and prevents unnecessary server
restarts.
Clojure is widely used in web development, so there are many mature libraries available for working with
web servers and databases.
Lastly, the development principles of the language and the community strive to avoid breaking changes.
This saves time and frustration for a project that requires a significant amount of time to develop and
evolve.

2.2 Design decisions and considerations

Evolduo is a small project with less than 5K lines of Clojure code. The choice of Clojure helps keep a
relatively small codebase while enabling users to perform a variety of tasks and allowing flexibility for
future growth.
When designing a project, there are many choices to make, depending on factors such as time constraints,
scope, and personal preferences.
It’s easy to get overwhelmed by the numerous options available, ranging from software architectural
patterns (e.g., CQRS vs. MVC), databases (e.g., XTDB5 or Datomic6 vs. traditional SQL databases),
frontend design approaches (SPAs vs. Server-Side Rendered pages), and code structure (microservices
vs. monolithic), among others.
Even after architectural choices have been made, engineers must still choose specific libraries and tools
to materialize the design choices. Factors like complexity, feature set, and production readiness come
into play here. In many cases, engineers will select the options that are most familiar to them, feel easiest
to use, are stable and mature.
When it comes to infrastructure, there are still many different options to consider. Should the application

5https://xtdb.com/
6https://www.datomic.com/

6

https://xtdb.com/
https://www.datomic.com/

2 Web Development

be deployed to a Platform as a Service (PaaS7) such as Heroku8 to minimize infrastructure knowledge and
maintenance costs? Should it be deployed to a small EC2 AWS instance via CloudFormation? Should
it be packaged as a Docker container and deployed to a self-managed Virtual Private Server (VPS)? The
number of choices goes on and on. In many cases, ease and simplicity come at a monetary cost, which
may not be desirable.
There are also many choices to make regarding security, performance tracking, analytics, emails, and
more.
The selection of tools and libraries for Evolduo is optimized based on the author’s knowledge, time
availability, user privacy orientation, and the intent to minimize operational expenses as much as possible.
This information should help readers understand the reasoning behind the design choices that are ex-
plained in the following sections.

2.3 Initial thoughts and prototyping

As mentioned earlier, some of the choices for tools and libraries can be subjective and depend on the
developer’s personal preferences. However, there are some design decisions that may be less clear and
requiremore careful consideration. In the following section2.3, wewill discuss several key design choices
related to music representation, data storage and application modularization.

2.3.1 Music representation

This passage discusses the considerations and decisions made in selecting a music representation format
for the Evolduo. The format needed to be both expressive and simple, with the ability to programmatically
convert MIDI pitch values to the chosen library’s format. Additionally, the format needed to have a
JavaScript implementation that would allow interactive playback in the user’s browser without requiring
any additional software downloads or installations.
After considering various options, it was decided that the ABC9 notation format was the best fit for
Evolduo’s needs due to its simplicity and feature set. The JavaScript library ABC.js10 is capable of
interpreting ABC notation in the browser, as well as allowing users to listen to and download the results
as MIDI andWAV files. MIDI was deemed essential as it allows the processing of music with compatible
software, such as musical composition software likeMuseScore11 or Digital AudioWorkstations (DAWs)
likeArdour12. Some of themusic produced by Evolduowas rendered usingVST instruments and included
in the samples13 section of the project’s website.

2.3.2 Database

For the size and complexity of this project, SQLite was the initial choice. The convenience of the underly-
ing database being a single file is hard to beat, especially in the prototyping phase of a project. Moreover,
SQLite comes with a feature set that covers the needs of the project. Despite basic needs, SQLite supports

7https://en.wikipedia.org/wiki/Platform_as_a_service
8https://www.heroku.com/
9https://abcnotation.com/
10https://www.abcjs.net/
11https://musescore.org/en
12https://ardour.org/
13https://evolduo.cons.gr/samples

7

https://en.wikipedia.org/wiki/Platform_as_a_service
https://www.heroku.com/
https://abcnotation.com/
https://www.abcjs.net/
https://musescore.org/en
https://ardour.org/
https://evolduo.cons.gr/samples

Chapter 2

advanced features such as JSON functions, Views, and derived columns.
After the initial prototyping phase and as soon as this project was deployed to a VPS, which happened in
mid-June 2022, SQLite was dropped and replaced with PostgreSQL.
There are several reasons behind this transition.
The first reason has to do with the supported data types and the flexibility of mapping them to JVM types.
PostgreSQL supports more data types, such as dates, which are not as feature full in the SQLite case. For
example, inspecting human-readable dates in the database (in PostgreSQL’s case) is far more convenient
compared to Unix epoch times.
The second reason relates to the transparency of the data conversion from and to the database data types.
Some data types, such as booleans and JSON, had to be manually converted, which is cumbersome and
error-prone.
An additional reason involves the convenience of accessing and inspecting the database via Secure Shell
(SSH) tunneling14, which is essential for the majority of software projects.
The last reason has to do with the fact that PostgreSQL is a database that was already installed on the
server where Evolduo was deployed, removing the burden and cost of having to deal with it.

2.3.3 Application modularization

Evolduo can be viewed as two separate logical components: Firstly web platform that enables users to
perform a set of actions, and secondly, the creation of music using evolutionary algorithms.
An initial design consideration was the potential separation of the web platform and the music process-
ing. The main reason behind this reasoning was the fact that web frameworks, such as Django15, which
is coded in Python, provide built-in features such as an administration interface, libraries for user and
permission management, and email sending capabilities. All of these functionalities would be needed for
Evolduo, and avoiding redundant development tasks is a key aspect of software engineering. To support
this selection, all data would be stored in a Django-compatible database (such as PostgreSQL). Evolduo,
which in this case would exist as a standalone background task, retrieves the data from the database or
some communication bus, process it, and returns it back to its source.
This was a compelling design consideration for several reasons. It felt like existing tools would be used
efficiently, and the main focus would be to design a system that generates music and not creating another
user management application, which would have bugs, be less secure, and lack necessary features.
The drawback of this approach was that splitting a single system into two parts would introduce several
undesired side-effects. These drawbacks include the challenges of maintaining two different systems,
switching between different programming languages, dealing with more complex deployment processes,
and establishing a communication pattern between the two components. This could be achieved in several
ways, ranging from a quick and simplistic method like directly accessing andwriting to the same database,
to a more organized, such as accessing and writing to the same database directly, to a more structured
approach, such as having a dedicated messaging queue.
The first option was ruled out because it’s a bad architectural pattern that can lead to confusion and data
inconsistencies. As a general rule, only one system should be responsible for writing to the database at
any given time. Starting a brand new system with such a violation was not a compelling prospect, and
the required investment would be too big to abandon this design decision later.

14https://www.ssh.com/academy/ssh/tunneling
15https://www.djangoproject.com/

8

https://www.ssh.com/academy/ssh/tunneling
https://www.djangoproject.com/

2 Web Development

The second option would involve incorporating and maintaining a messaging bus or queue. That could
be something like RabbitMQ16, but it would require the installation and maintenance of an additional
component, which seemed excessive for this project. The most appealing alternative was Redis, since
it was already installed on the VPS where Evolduo was deployed, and it already supported a messaging
queue17. Thankfully, this possibility reached a dead end, as the most popular Redis Clojure library18 used
a custom format that was not natively supported in Python. Consequently, this potential approach was
abandoned, leading to the decision to develop the entire system in Clojure, with the idea that maintaining
a single system, with which the author was most familiar, would be more cost and time-effective, even
though it would mean that the user management part would need to be written from scratch.

2.4 Application Architecture

As explained previously, Evolduo can be viewed as two different components: a web platform and a
music engine.
In this section, we will be focusing on the former aspect and the corresponding architectural decisions.
Everything that is music related with be covered in the next chapter3.
Evolduo follows the widely adoptedModel-View-Controller (MVC) software architectural pattern which
is commonly used in many well-known application frameworks like Ruby on Rails, Django and Spring
Framework.

2.4.1 Model-View-Controller (MVC)

Even though Clojure does support class-like constructs19, vectors and maps are typically used to organize
information.
The Model portion of the project contains SQL query abstractions, rather than definitions of domain
models that correspond to database entities.
The View functions accept data and produce a representation of that information, such as HTML markup
or JSON objects.
The Controllers are responsible for processing HTTP requests, handling user input validation and per-
mission checking, selecting the appropriate View and Model data, and returning the appropriate HTTP
status codes with corresponding information.

2.4.2 Entity-relationship model

Figure 1 presents the Entity-relationship Diagram (ERD) of Evolduo.
The main entities of the project are Users and Evolutions. The majority of relationships and actions are
oriented around those two entities.
The relationship between them is that users create evolutions, which contain a number of iterations. Each
iteration has a number of chromosomes representing musical phrases.
Within Evolduo, users can invite others to participate in private evolutions, and they also have the option
to submit ratings for the chromosomes they have access to.

16https://www.rabbitmq.com/
17https://redis.com/redis-best-practices/communication-patterns/event-queue/
18https://github.com/ptaoussanis/carmine
19https://clojure.org/reference/datatypes#_deftype_and_defrecord

9

https://www.rabbitmq.com/
https://redis.com/redis-best-practices/communication-patterns/event-queue/
https://github.com/ptaoussanis/carmine
https://clojure.org/reference/datatypes#_deftype_and_defrecord

Chapter 2

Figure 1: Database Schema

Additionally, a News entity was implemented for creating announcements that could potentially trigger
notifications for users. However, no news posts have been made at the time of writing this thesis20.

2.4.3 Styling and interactivity

The application’s styling is done using the Bulma CSS framework, which provides all the necessary
components for a standard web application.
The use of JavaScript is limited to integrating ABC.js, which allows users to see a rendered score for an
ABC track and listen to the tracks in the browser.

20https://evolduo.cons.gr/news

10

https://evolduo.cons.gr/news

2 Web Development

2.4.4 User Actions and Management

Users can register for an account using their email address and password, and can subsequently log in
and request a password reset if necessary. However, at the time of writing, users are not able to change
their email or password. The implementation of these features was postponed in favor of adding more
customization options for music generation.
In terms of music-related features, Evolduo enables users to create Evolutions, which are processes that
evolve musical phrases. Additionally, users have the capability to monitor all the generated phrases
across various generations. Users can invite others to participate in private evolutions that are not visible
to other or anonymous users. Furthermore, users have the ability to rate tracks, which serves as a means
to influence the evaluation of music tracks.
Regarding user data privacy, the application was designed in compliance with GDPR regulations, and
users are allowed to delete their profiles.

2.5 GDPR

The General Data Protection Regulation (GDPR) is a regulation of the European Union (EU) that estab-
lishes a set of rules and standards for the collection, use, and storage of personal data. It is designed to
protect the privacy of individuals and give them greater control over their personal information.
The GDPR applies to any organization, whether based in the EU or not, that collects or processes the
personal data of EU residents. This means that companies that operate in the EU, or that have customers
in the EU, must comply with the GDPR.
The GDPR sets out a number of rights for individuals, including the right to access their personal data,
the right to have their personal data erased, and the right to object to the processing of their personal data.
It also imposes a number of obligations on organizations that collect or process personal data, such as the
obligation to obtain consent from individuals before collecting their personal data, and the obligation to
keep personal data secure.
The GDPR is considered an essential regulation because it helps to protect the privacy and personal data
of individuals, and it provides a common set of rules and standards for organizations that collect and
process personal data. This helps to ensure that personal data is handled in a fair and transparent way,
and that individuals have greater control over their own information.
Evolduo’s data is stored in a VPS that is located in France and the majority of its userbase is located in
EU. As such Evolduo must comply with GDPR regulations.
Evolduo allows users to delete their accounts which is one of the most important points of GDPR regula-
tions. Account deletion anonymizes all Personally Identifiable Information (PII), which is just the email,
and keeps the data the user has generated as it cannot be linked back to the original user.

2.6 Security and Privacy

Building secure and privacy-oriented software systems is one of the most challenging tasks in software
engineering. System security often comes at the cost of user privacy or financial resources. In the case
of Evolduo, which is a small project with limited resources, options such as running the application on
a Platform as a Service (PAAS) provider like Heroku or using a DDoS Firewall like Cloudflare21 are

21https://www.cloudflare.com/

11

https://www.cloudflare.com/

Chapter 2

not feasible. Instead, Evolduo runs on a VPS, and various proactive measures have been implemented to
protect the platform and user information.
This section highlights some of the security and privacy decisions that have been made, potential alter-
natives, and why certain options were not chosen.
While Single Sign-On (SSO) is considered both convenient and secure, using a third-party provider such
as Twitter is not a viable option for Evolduo. Although platforms like Twitter are less prone to attacks
compared to a small software system like Evolduo, using a third-party SSO provider often entails exten-
sive tracking of users, which conflicts with the goal of protecting user privacy.
To prevent bots and users from abusing the site, Evolduo utilizes a Firewall (as described in section 2.6.1)
and a CAPTCHA mechanism (as explained in section 2.6.2).
Usingwell-known analytics platforms like Google Analytics has privacy implications, which is why those
were not integrated into the application. During the prototyping phase, a small self-hosted alternative was
used22 but it was quickly dropped due to GDPR requirements, which mandate that users must give their
consent before their visits can be tracked.
The only third-party platforms that Evolduo uses are Sentry 23 for tracking errors and Mailjet 24 for
sending emails. In the case of Sentry, no personally identifiable information (PII) is tracked. However,
it is necessary to provide users’ email addresses to Mailjet for sending emails.
Finally, resource serving (Javascript and CSS) is done through Nginx, as utilizing Content Delivery Net-
work (CDN) services often results in them being identified as trackers by privacy-focused tools like
Privacy Badger.

2.6.1 Firewall

Evolduo employs the fail2ban25 intrusion prevention software framework, a widely available security
mechanism across major Linux distributions.
This software runs as a systemd26 service, monitoring log files for malevolent indicators, including ex-
cessive password failures and exploits. Fail2ban serves as a firewall for Evolduo, capable of blacklisting
IP addresses upon detection of repetitive failed login or signup attempts.
The configuration directive for Evolduo in /etc/fail2ban/jail.d/jail.local is present in Listing 7:

[evolduo]

enabled = true

port = https

filter = evolduo

logpath = /var/lib/docker/containers/*/*-json.log

maxretry = 20

findtime = 120

bantime = 600

Listing 7: Evolduo Jail

22https://github.com/milesmcc/shynet
23http://sentry.io/
24https://www.mailjet.com/
25https://www.fail2ban.org
26https://systemd.io/

12

https://github.com/milesmcc/shynet
http://sentry.io/
https://www.mailjet.com/
https://www.fail2ban.org
https://systemd.io/

2 Web Development

This configuration enables the parsing of docker container logs and allows for 20 login or signup attempts
within a 120 second window. If this limit is exceeded, a 600 second ban will be imposed on the offender.
The filter definition for this jail file is shown in Listing 8:

[Definition]

failregex = .*Invalid (login|signup) attempt from <HOST>.*

ignoreregex =

Listing 8: Evolduo Jail Filter

Invalid login and signup attempts generate warning log entries that match the fail regex pattern. These
entries are tracked using the <HOST> field, which represents the IP address of the user.
For this configuration to work it’s important to have Nginx proxy the header of the real IP of the user,
which is the $remote_addr and will be provided as the X-Forwarded-For header (Listing 9):

[Definition]

location / {

proxy_pass http://10.19.0.5:4000;

proxy_set_header X-Forwarded-For $remote_addr;

}

Listing 9: Evolduo Nginx Proxy

Fail2ban offers a client that allows checking the status of the different jails configured. It is worth noting
that the container has been renamed to foo to minimize the output (Listing 10):

$ fail2ban-client status evolduo

Status for the jail: evolduo

|- Filter

| |- Currently failed: 1

| |- Total failed: 1

| `- File list: /var/lib/docker/containers/foo/foo-json.log

`- Actions

|- Currently banned: 0

|- Total banned: 1

`- Banned IP list:

Listing 10: Evolduo Fail2ban Client

An important consideration when utilizing fail2ban with docker is that redeployments of the application
will result in a new container, necessitating a restart of the fail2ban service to track the newly created log
files. This issue has been discussed in detail on GitHub27.

2.6.2 Captcha

Aswith themajority of applications where users can register and perform certain sensitive actions, such as
triggering the sending of emails, the use of CAPTCHA28 is necessary. CAPTCHA is a type of challenge-

27https://github.com/fail2ban/fail2ban/issues/2947#issuecomment-784229259
28acronym that stands for Completely Automated Public Turing test to tell Computers and Humans Apart

13

https://github.com/fail2ban/fail2ban/issues/2947#issuecomment-784229259

Chapter 2

response test used in computing to determine whether or not the user is human. This is often used to pre-
vent automated programs, or bots, from accessing certain websites or services. Well-known CAPTCHA
services include reCAPTCHAhttps://developers.google.com/recaptcha/ and hCaptcha29.
The initial CAPTCHA in Evolduo, developed during the prototyping phase, was an esoteric music chal-
lenge that would ask the user which was the quadrant (also known as tetrad 30) chord at the nth degree of
a given key and scale. For example, if the user was given C major and the 2nd degree, the answer would
be Dm7. While this approach seemed entertaining for this sort of application, it would drastically put off
users from signing up.
Per the suggestions of friends during development, this was quickly changed to the use of nanocaptcha31,
which is a simple self-contained library for generating CAPTCHA challenges that are more familiar to
end-users.
The reason for not selecting well-known CAPTCHA services was primarly user privacy.

2.7 Error tracking and performance

Measuring and optimizing performance is a task that can be approached in many different ways. When
developing a system that is aimed to be used by end-users, providing a good user experience is a very
important aspect. Even though the end goal is clear, taking the appropriate measures is usually not as
simple.
The main two aspects to consider for this problem are error handling and performance tracking.
Error tracking is simpler as it’s just monitoring events of errors that were triggered by the system. As
soon as this happens, all that’s left to do is to identify the root cause and patch the system.
Error reporting is done via Sentry, which will provide a stack trace of the error as well as context infor-
mation (operating system, browser, system version, etc.). Sentry needs to be monitored regularly, and it
provides a weekly report regarding the errors that occurred on the platform.
Evolduo is trivial performance-wise from the web activity standpoint. It is expected that it will have
just a handful of active users, even if it develops a small user base. On the other hand, the background
evolutionary processes are expensive tasks in terms of both memory and CPU usage. Those will process
and generate an important amount of data for each Evolution iteration. The next chapter will make it
clearer what exactly this process contains.
The quote “Premature optimization is the root of all evil” applies to this work too. Trying to guess and
optimize the platform for the best results is a guessing game and it can involve an important amount of
work that could be otherwise invested in something more useful.
Performance tracking is also done via Sentry, which provides information on how much time an HTTP
request took to finish. This is useful as it can reveal poorly optimized code or missing database indexes.
What Sentry is not monitoring right now are background processing tasks, such as evolving an evolution’s
iteration. This is something that is left for future improvements.

29https://www.hcaptcha.com/
30https://en.wikipedia.org/wiki/Tetrad_(music)
31https://github.com/logicsquad/nanocaptcha

14

https://developers.google.com/recaptcha/
https://www.hcaptcha.com/
https://en.wikipedia.org/wiki/Tetrad_(music)
https://github.com/logicsquad/nanocaptcha

2 Web Development

Figure 2: Infrastructure diagram

2.8 Development and Deployment

2.8.1 Development

Evolduo is a monolithic web application, and as such, its infrastructure needs are limited. The entire
infrastructure can be seen in Figure 2. As already described in Section 2.3.3, for the size and complexity
of this project, utilizing a microservice or multiservice architecture would be overkill.
Evolduo’s source code is hosted on Github32, and it is using Github actions for its build and deployment
tasks.
There are two tasks this project is using. One runs tests, and it is triggered on each commit push. The
second one prepares a release when a git tag is added.
The steps included in the release task are:

1. Compile the project.

2. Package it as a JAR file, which is a common practice for JVM-based projects.

3. Create a Docker image including the newly built JAR file.

4. Push the image to the Docker Hub33.

All these actions are publicly visible and are utilizing the free tiers provided by those services.
One could argue that even Dockerizing the build is unnecessary complexity, but the main reason behind
this is that Evolduo is running on a shared VPS, which also runs other services. Docker provides resource
isolation, convenience (there may be different needs for JVM runtimes), and security. If a service is
compromised, the others are running in different isolated environments.

32https://github.com/kongeor/evolduo-app
33https://hub.docker.com/repository/docker/kongeor/evolduo-app

15

https://github.com/kongeor/evolduo-app
https://hub.docker.com/repository/docker/kongeor/evolduo-app

Chapter 2

The development of this project, given its complexity and the fact that a single person is working on
it, does not require a complex development lifecycle (e.g., ticket management, working on different
branches, or creating PRs). The majority of development is done on the main branch, and most of the
commit pushes to the main branch are also released to the production environment.

2.8.2 Deployment

Deploying Evolduo is a simple and mostly manual process. It involves the following steps:

1. Connect to VPS via SSH.

2. Pull the source code as it may have updated static resources.

3. Bump the version in Docker compose file to reflect the newly built version.

4. Restart the docker container.

With Evolduo having just one instance, a deployment will cause a small outage (Nginx returns HTTP
502 responses in that case) and this is lasting a couple of minutes. For the amount of traffic this project
has this issue is negligible.

2.9 Libraries and tools

Evolduo is using 27 third-party libraries, most of which are very common for web-based projects. In
this subsection three of them will be described as their functionality is important and different when
compared to other JVM or OOP languages. A fourth one, the one related to evolutionary algorithms, will
be described in the next chapter.
The three libraries that will be described here cover the needs for for a data-driven architecture
(integrant34), also known in the industry as dependency injection, SQL queries (honeysql35), and
schema validation (malli36).

2.9.1 Integrant

Integrant is a Clojure micro-framework for building applications with a data-driven architecture. It serves
the same purpose as the Inversion of Control (IoC) container in Spring Framework. However, instead of
using class based annotations the dependency graph is constructed using a Clojure map, as can be seen
in Listing 11:

(def config

{:adapter/jetty {:handler (ig/ref :handler/run-app)

:settings (ig/ref :config/settings)}

:handler/run-app {:db (ig/ref :database.sql/connection)

:settings (ig/ref :config/settings)}

:database.sql/connection {:settings (ig/ref :config/settings)}

:database.sql/migrations {:settings (ig/ref :config/settings)}

:config/settings {}

34https://github.com/weavejester/integrant
35https://github.com/seancorfield/honeysql
36https://github.com/metosin/malli

16

https://github.com/weavejester/integrant
https://github.com/seancorfield/honeysql
https://github.com/metosin/malli

2 Web Development

:evolution/timer {:db (ig/ref :database.sql/connection)

:settings (ig/ref :config/settings)}

:mail/timer {:db (ig/ref :database.sql/connection)

:settings (ig/ref :config/settings)}})

Listing 11: Evolduo System Config

Here :database.sql/connection configuration depends on :settings which contains the database
credentials and the :handler/run-app which configures the web server routes and settings, depends on
:database.sql/connection etc. This is a very concise way to describe the entire system in one place,
making it easy to reason about, modify and extend.

2.9.2 Honeysql

There are a number of libraries in the Clojure ecosystem that cover the need for querying SQL databases
in a convenient way. These range from relatively thin SQL libraries (e.g. HugSQL37, YeSQL38) to more
traditional like Object-Relational Mapper (ORM) abstractions (e.g. Toucan39).
Honeysql falls on the thiner side, but instead of using SQL files like hugsql, it uses Clojure’s data struc-
tures to represent SQL queries. In Listing 12 it is presented how a data structure is transformed to a vector
of query and variables that can then be passed to the query engine:

(let [q-sqlmap {:select [[[:raw "count(*)"] :count]]

:from [[:evolutions :e]]

:where

[:and

[:> :e.created_at [:raw ["now() - interval '1 day'"]]]

[:= :e.user_id 1]]}]

(h/format q-sqlmap))

=>

["SELECT count(*) AS count

FROM evolutions AS e

WHERE (e.created_at > now() - interval '1 day') AND (e.user_id = ?)" 1]

Listing 12: Honeysql example

2.9.3 Malli

Malli is a library that can validate data against predefined schemas, among other things. In Evolduo it
serves a dual purpose: ensuring that no bad data are stored in the database and providing form validation
errors with human-readable messages.
Listing 13 shows a schema that validates user signup data:

;; Minimum eight characters, at least one uppercase letter,

;; one lowercase letter, one number and one special character

37https://www.hugsql.org/
38https://github.com/krisajenkins/yesql
39https://github.com/metabase/toucan

17

https://www.hugsql.org/
https://github.com/krisajenkins/yesql
https://github.com/metabase/toucan

Chapter 2

(def password-regex #"^(?=.*?[A-Z])(?=.*?[a-z])(?=.*?[0-9]).{8,}$")

(defn safe-lower-case [s]

(when s

(str/lower-case s)))

(def Signup

[:and

[:map {:closed true}

[:email {:decode/string {:enter safe-lower-case}}

[:re {:error/message "invalid email"} email-regex]]

[:password [:re {:error/message "Invalid password"} password-regex]]

[:password_confirmation [:string]]

[:captcha [:string {:min 1}]]

[:newsletters {:optional true} [:string]]]

[:fn {:error/message "passwords must match"

:error/path [:password_confirmation]}

(fn [{:keys [password password_confirmation]}]

(= password password_confirmation))]])

(me/humanize (m/explain Signup {:email "foo@examplecom"

:password "Foo123456"

:password_confirmation ""}))

=> {:email ["invalid email"]

:captcha ["missing required key"]

:password_confirmation ["passwords must match"]}

Listing 13: Malli example

Here, ordinary Clojure constructs like functions and maps are used to define a schema with the following
characteristics:

• It’s closed, which means that not known keys (e.g. :name) would trigger an error.

• It shows how to use regex validation and provide custom error messages instead of the built-in ones
(with the use of :error/message).

• It demonstrates how to use functions for more complex validation, like checking that two fields
have the same value.

• It shows how, with the use of standard Malli functions, we can construct a map that can be conve-
niently passed to other parts of the system (e.g., view layer to display the errors).

It should be noted that in this example namespace imports have been omitted for brevity.

2.10 Infrastructure

As described previously Evolduo runs in a docker container in a small VPS behind an Nginx server.

18

2 Web Development

2.10.1 Nginx and HTTPs

Nginx is one of the most commonly used web servers and people seem to prefer it for its speed and
security. Nginx is lightweight and is present on all major Linux distributions.
As in the majority of cases, here Nginx is proxying requests to the Docker container (Diagram2). This
allows two things to be enabled. One is having Let’s Encrypt configured at the system/Nginx level, which
is essential for all web applications at present. Let’s Encrypt provides a valid HTTPs certificate, ensuring
that all traffic is served over a secure channel. The second feature that Nginx provides is serving static
assets (such as JS, CSS, and audio files), which it can do much more efficiently than a JVM runtime.

2.10.2 Databases

Evolduo is utilizing two databases, PostgreSQL as its main storage and Redis for session cache. The
databases are not running inside Docker as this can potentially have unwanted consequences when it
comes to management and versioning. It is considered a much safer option to utilize a dedicated database
instance for these cases.
Redis allows the web server to be redeployed without losing user sessions. User sessions last for 30 days,
whichmeans that users will be logged into the application without having to re-login for a month. Kicking
out users on each deployment would provide a bad user experience and could drive away the already small
user base the project has. Additionally, at the time of the release, the project didn’t have a password
recovery functionality, which could be a dead end for users who forgot their password. However, the
password reset functionality was implemented shortly after the project was announced4.1.

2.11 License

Evolduo’s source code is released under the Affero General Public License, and the music tracks created
by the project belong to the public domain. This section explains the motivation behind this dual license
selection.
The Affero General Public License (AGPL) is a type of open-source license that is designed specifically
for software that is used over a network, such as a web-based application. It is based on the GNUGeneral
Public License (GPL), but it includes an additional provision that requires the source code of the software
to be made available to users who interact with it over a network.
The AGPL is considered to be a good candidate for a SaaS (Software as a Service) project because it
ensures that users of the software have access to the source code, even if they are not directly downloading
and running the software on their own computers.
In addition to its network-oriented provision, the AGPL has many of the same features as the GPL,
including the requirement that the source code of the software must be made available to anyone who
receives a copy of the software, and the requirement that any modifications to the software must also be
made available under the AGPL. These provisions ensure that the software remains open and accessible,
and that any improvements made to the software are shared with the broader community.
The public domain is important for generated content because it provides a way for the data to be freely
available to others without restriction. When a work is in the public domain, it is not protected by copy-
right or other intellectual property laws, and anyone can use, modify, distribute, or sell the work without
obtaining permission from the creator.

19

Chapter 2

For generated content, such as computer-generated art, music, or writing, the public domain can be par-
ticularly important because it allows others to build upon and expand the original work, creating new and
innovative creations. This can foster creativity and collaboration within the community of creators, and
it can help to ensure that new works are not held back by restrictive intellectual property laws.

20

3 Evolutionary Music

Chapter 3: Evolutionary Music

3.1 Evolutionary algorithms

An evolutionary algorithm is a type of optimization algorithm that uses techniques inspired by evolution-
ary biology to find solutions to problems. These algorithms are typically used to solve problems that are
difficult or impossible to solve using traditional algorithms, such as problems with a large search space
or complex constraints.
The basic idea behind evolutionary algorithms is to create a population of potential solutions to a problem,
and then use principles inspired by natural selection, reproduction, and genetic mutation to evolve the
population over time, with the goal of finding the best possible solution to the problem. This involves
evaluating the fitness of each solution in the population and using this information to guide the evolution
of the population.
John Holland and David Goldberg are both influential figures in the field and they have made many
important contributions to the development of evolutionary algorithms[3, 4].

3.2 EvolTrio

Author’s undergraduate work involved the development of a similar program: A program that would
compose musical phrases using evolutionary algorithms[5].
At late 2000’s, software was mainly distributed as desktop applications, and EvolTrio followed suit. This
application was written, and rewritten a number of times, mainly to change the GUI libraries. Initially it
used the Java FX that eventually became obsolete and dropped, it was rewritten with the use of Apache
Pivot, and its final form used the SWT which was developed and used by the Eclipse foundation in a
number of application with the Eclipse IDE being probably one of the most well known one.
EvolTrio also used the Java Web Start launching mechanism which would make it easier for users to use
the app. EvolTrio intended to use a web service that would store user feedback submissions but this work
was never finished.

3.3 Chickn

EvolTrio used the JGAP java library for the genetic algorithms, one of the most mature and well known
libraries in the Java ecosystem. The same library could be used in Evolduo with the use of Java interop,
but the implementation would still be verbose.
A few years before the work on this thesis, the Chickn library was developed by the author. Chickn is
a genetic algorithms40 library for Clojure. During the Evolduo work, the library was improved, taking a
lot of inspiration from Sean Moriarity’s book, Genetic Algorithms in Elixir[6].
The following code shows how to define a problem where the algorithm will try to find a chromosome
with all genes being 1 (Listing 14):

(ns chickn.examples.hello-world

(:require [chickn.core :refer [default-cfg init-and-evolve higher-is-better]]

[chickn.util :as util]))

40It should be noted the terms Evolutionary algorithms and Genetic algorithms are used interchangeably in this project, even
though those are not technically the same.

21

Chapter 3

Figure 3: EvolTrio main view

(def one-or-zero (fn [& _] (if (> (rand) 0.5) 1 0)))

(def population-size 20)

(def chromo-gen #(repeatedly population-size one-or-zero))

(defn fitness [xs]

(apply + xs))

(defn solved? [_ {:keys [best-chromosome]}]

(every? #(= 1 %) best-chromosome))

(def mutation-op

#:chickn.mutation

{:type :chickn.mutation/rand-mutation

:rate 0.3

:random-func rand

:mutation-func one-or-zero})

(def config (merge

default-cfg

#:chickn.core

{:chromo-gen chromo-gen

:fitness fitness

:solved? solved?

22

3 Evolutionary Music

:reporter util/noop

:mutation mutation-op

:comparator higher-is-better}))

Listing 14: Chickn Example

If we provide this configuration to the Chickn process we will immeditaly get a solution to this problem:

(dissoc

(init-and-evolve config 100) :population)

=> {:solved? true, :iteration 7,

:best-chromosome [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1],

:time 1}

Listing 15: Chickn Example Cont.

The development of Evolduo helped evolving and improving the Chickn library and the Chickn library
itself, proved to be a helpful and convenient library that helped the development of Evolduo.

3.4 Music

3.4.1 Music theory basics

Music theory is the study of the language and notation of music. It encompasses a wide range of topics,
including the principles of melody, harmony, and rhythm, as well as the structure and function of intervals,
chords and scales.
Pitch is the perceived highness or lowness of a sound. It is determined by the frequency of the sound
waves. Higher-pitched sounds have a higher frequency, while lower-pitched sounds have a lower fre-
quency.
An interval is the distance between two pitches, and it is usually measured in half steps or whole steps.
For example, the interval between C and D is a whole step, while the interval between C and E is a major
third (two whole steps).
One of the fundamental concepts in music theory is the idea of a musical scale, which is a series of pitches
arranged in a specific order.
The most common scale in Western music is the major scale, which consists of eight pitches and has a
bright, happy sound. The pitches in a major scale are arranged in a specific pattern of whole and half
steps (W-W-H-W-W-W-H), and this pattern is what gives the scale its unique sound.
Another important concept in music theory is the idea of a chord, which is a group of three or more
pitches played at the same time. Chords are an essential element of harmony, which is the way that
chords are used in music to create a sense of unity and movement. There are many different types of
chords, including major chords, minor chords, and diminished chords, each of which has a unique sound
and function in music.
Chord progressions are sequences of chords that are played in a specific order. Chord progressions can
create a sense of movement and direction in music.

23

Chapter 3

The root note is the first note of a chord or scale, and it is the pitch around which the chord or scale is
built. For example, the C major scale consists of the notes C, D, E, F, G, A, and B, and the root note of
this scale is C.
A mode is a type of musical scale and it is derived from the major scale. Different modes have different
sounds and are used in music in different ways to create variety or different feelings.
Overall, music theory is a vast and complex subject that encompasses many different principles and
concepts.

3.4.2 ABC notation

ABC notation is a shorthand musical notation system using letters, numbers, and symbols, making it
easier to share and communicate musical pieces in written form.
In ABC notation, each line of music is divided into small, easy-to-read sections called bars. Each bar
is written as a string of characters, with each character representing a specific element of the musical
notation. For example, the letter A represents a musical note, and the symbol "," represents a rest.
Here is an example of ABC notation:

X:1

T: The Star of the County Down

M: 6/8

L: 1/8

R: Jig

K: Dmaj

|: D2D DFA | G2G GFG | A2A AFA | B2B Bcd |

d2d dcB | A2A AFA | G2G GFG | E2E E2D :|

|: B2B BAF | G2G G2E | F2F FEF | E2E E2D |

D2D DFA | G2G GFG | A2A AFA | B2B Bcd |

d2d dcB | A2A AFA | G2G GFG | E2E E2D :|

Listing 16: ABC example

In this example, each line starts with a symbol indicating what the line represents (e.g., "X" for the
reference number, "T" for the title, etc.). The characters following the line symbol represent the musical
notation for that line. The "M" line specifies the meter of the piece, the "L" line specifies the length of
the notes, the "R" line specifies the rhythm, and the "K" line specifies the key.
ABC notation provides a compact and standardized way of writing downmusical pieces that can be easily
shared and understood by musicians across different communities and languages.
Among the alternative formats, e.g. Lylipond, ABC notation was chosen as it was the simplest one in
terms of representation of the information. As such conversion to the ABC format would be significantly
simpler.

3.4.3 Chord construction

Chord construction is the process of generating chords from a root note and a scale. This is a fundamental
concept in music theory and it involves using pitches of a scale to create chords that are diatonic to that
scale.

24

3 Evolutionary Music

Figure 4: C major chords

I II III IV V VI VII I

C4 Db D Eb E F Gb G Ab A Bb B C5

60 61 62 63 64 65 66 67 68 69 70 71 72

Figure 5: C major degrees / Notes / Pitches

To construct chords from a root note and a scale, the first step is to identify the pitches of the scale that
will be used. For example, if the root note is C and the scale is the major scale, the pitches of the scale
would be C, D, E, F, G, A, and B.
Next, the chords that can be constructed from these pitches are determined. In the case of the C major
scale, there are seven triads that can be constructed, one for each degree of the scale. These triads are C
major, D minor, E minor, F major, G major, A minor, and B diminished (Figure 4).
For example, the C major triad consists of the pitches C, E, and G, which are the first, third, and fifth
pitches of the C major scale. If we add another one third above the fifth (7th degree), we would get B.
This tetrat would be the CMaj7 chord (Figure 5) .
The other triads are constructed in a similar way, using the pitches of the scale that correspond to their
root note[7][8].
Of particular interest is the chord at VII degree, the Bdim. This chord has two minor 3rd intervals and as
such it contains the tritone41. The tritone, which is a 4th augmented interval is unstable and has a strong
tendency towards resolution with its tonic.

3.4.4 Chord construction process

The only building blocks we will need for the chord construction process is a root note and a scale. For
the scale we will use the intervals which in turn can be turned into actual pitch values. To keep things
as simple as possible we will start with middle C, which is also denoted as C4 and has a pitch value of

41A minor 3rd, has an interval of 3 semitones. Two minor 3rd’s have 6 semitones in sum. The 6 semitones equal 3 tones,
which is known as the tritone.

25

Chapter 3

60. We will be using pitch numbers as those are the same as MIDI pitches and it is a standard way of
communicating this information. The major scale, also mentioned as ionian mode, will be the main scale
for the most of the examples below. The intervals of the ionian mode are the following (Listing 17):

(def ionian-intervals [2 2 1 2 2 2 1])

Listing 17: Ionian/Major intervals

We can use those intervals to calculate pitches and potentially move things around by changing the root
note (Listing 18):

(defn intervals->scale [ivs]

(reduce (fn [acc i] (conj acc (+ i (last acc)))) [0] ivs))

(intervals->scale ionian-intervals)

=> [0 2 4 5 7 9 11 12]

;; we can now easily move to 4th octave by just adding 60

;; to all notes

(mapv #(+ 60 %) (intervals->scale ionian-intervals))

=> [60 62 64 65 67 69 71 72]

Listing 18: Major notes calcuation

To construct chords consistently it will be required to move to upper octoves, as notes from the VI degree
and onwards will need to borrow notes from the upper octaves.
In the next example, this requirement will be met by using Clojure’s lazy and infinite sequences (Listing
19):

(def mode-map

{"major" [0 2 4 5 7 9 11],

"dorian" [0 2 3 5 7 9 10],

"phrygian" [0 1 3 5 7 8 10],

"lydian" [0 2 4 6 7 9 11],

"mixolydian" [0 2 4 5 7 9 10],

"minor" [0 2 3 5 7 8 10],

"locrian" [0 1 3 5 6 8 10]})

(defn intervals* [intervals]

(mapcat

(fn [i]

(map (partial + (* i 12)) intervals)) (iterate inc 0)))

;; if we don't take a specific amount we will get an *infinite*

;; number of notes

(take 20 (intervals* (get mode-map "major")))

26

3 Evolutionary Music

=> (0 2 4 5 7 9 11 12 14 16 17 19 21 23 24 26 28 29 31 33)

Listing 19: Major notes calcuation cont.

In this example we provide a key in ABC format and we get a pich, also mentioned as int-note in
Evolduo (Listing 20):

(defn key->int-note [k]

(let [[n acc] k]

(if (sharp? k)

(let [abc-note (if acc (str "^" n) (str n))]

(note-abc-map abc-note))

(let [abc-note (if acc (str "_" n) (str n))]

(note-abc-map-flats abc-note)))))

(key->int-note "C") => 60

Listing 20: Key to pitch conversion

Now we can put everything together and construct chords. Chords as explained previously consist of
specific intervals. The chord at the first degree (I) of C major scale, would have the notes 60, plus the
note one third above that that would be 4 (0 being the 1st and 2 being the second - see major scale intervals
above), which would sum into 64, plus one third above that which would be a 3. This way we see that
the notes of the chord at the 1st degree of C major scale are 60, 64 and 67 (Listing 21):

(def chord-interval-map

{"R" [0], "R + 5 + R" [0 4 7], "R + 3 + 3" [0 2 4], "R + 3 + 3 + 3" [0 2 4 6]})

(defn gen-chord-notes [{:keys [key mode degree chord]}]

(let [root-note (key->int-note key)

scale-notes (intervals* (mode->scale mode))

chord-notes (map #(+ root-note (nth scale-notes (+ degree %)))

(get chord-intervals-map chord [0 2 4]))]

chord-notes))

(gen-chord-notes {:key "C" :mode "major" :degree 0 :chord "R + 3 + 3"})

=> (60 64 67)

Listing 21: Chord notes generation

3.5 Chromosome structure

Chromosomes need to encode two types of information, note pitch and duration. As can be seen in
literature[9], in many cases note’s pitch representation aligns with the MIDI specification, and duration
is an arbitrary number that corresponds to its music equivalent (whole, half, eight etc.). This encoding has

27

Chapter 3

the benefit that it is compact, but the drawback is that genetic operators can easily produce choromosomes
which duration’s isn’t consistent. This can bemitigated with post-processing steps or with smarter genetic
operators, but the complexity that would be introduced made those approaches less compelling for this
project.
In this work the chromosome structure follows the format of [10], in which pitches are still represented
with their correspondingMIDI values, but duration is represented with the amount of prolongation values
(-2).
Let’s consider the following example (Listing 22):

(def c1 [60 -2 -2 -2 -2 -2 -2 -2 60 -2 -2 -2 -2 -2 -2 -2

62 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2

64 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2

65 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2])

Listing 22: Chromosome structure

Here, we have 4 measures as each measure has 16 values. The first measure has a C4 (pitch 60), that is
followed by 7 prolongation notes (-2). As such, it has a total duration of 1 + 7 = 8, which is a half. It is
followed by a note of similar pitch and duration. The 3rd one has a pitch of 62, that has a duration of 16
which is the entire measure, which is a whole note.
The work that describes this format [10], also supports a value of -1 which represents a rest but support
for rests was not implemented.
The way this structure is used also has the limitation that a note can be at most of the 16th duration,
and 32th or 64ths can’t be represented. By growing the measure notes to 32 or 64 this limitation can be
alleviated, but in practice this work just uses halfs, quarters and eights.

3.6 Genetic operators

As with most evolutionary algorithm approaches, Evolduo has crossover and mutation operators.

3.6.1 Helpers

With the use of a functional language, creating small functions that do one thing is very common.
In this section one of the most useful ones will be described.
One of those functions just takes a vector of integers, and creates a data structure of easy digestible
information. The implementation of this function is the following (Listing 23):

(defn calc-note-times [measure]

(loop [i 0

notes []]

(if (>= i (count measure))

notes

(recur

(inc i)

(let [note (nth measure i)]

(if (= -2 note)

28

3 Evolutionary Music

(update-in notes [(dec (count notes)) :duration] inc)

(conj notes {:note note :duration 1 :index i})))))))

Listing 23: Calculating note times

In this example, the loop/recur construct that Clojure has is used which prevents stack consumption. This
is useful when there is a need for recursive data processing as JVM doesn’t have tail call optimization.
If we process the Chromosome from Listing 22 we will get (Listing 24):

(calc-note-times c1)

=>

[{:note 60, :duration 16, :index 0}

{:note 62, :duration 16, :index 16}

{:note 64, :duration 16, :index 32}

{:note 65, :duration 16, :index 48}]

Listing 24: Calculate note times

This result is much easier to understand and pass for processing to other parts of the code.

3.6.2 Crossover

Evolduo is using a single point cut crossover. There is no application specific code apart from what the
Chickn library provides. Here is a simple example:

(let [pop [{:genes [0 1 2 3] :fitness 1}

{:genes [4 5 6 7] :fitness 1}

{:genes [8 9 10 11] :fitness 1}

{:genes [12 13 14 15] :fitness 1}]

random-func (constantly 0.5)]

((->operator {::type ::cut-crossover

::rate 0.5

::pointcuts 1

::rand-nth rand-nth

::random-point chickn.math/rnd-index

::random-fun rand}) {:chickn.core/pop-size 4} pop))

=>

[{:genes [8 13 14 15], :fitness 0, :age 0}

{:genes [12 9 10 11], :fitness 0, :age 0}

{:genes [4 5 6 7], :fitness 0, :age 0}

{:genes [8 9 10 11], :fitness 0, :age 0}]

Listing 25: Crossover example

In this example we are constructing a cut-crossover operator, with a rate of 50%, using a single cut point
and using the stock random functions Clojure is providing. We see see that the 3rd and 4th chromosomes
were chosen and were cut at index 1 (zero based).

29

Chapter 3

3.6.3 Mutation

Mutation is more complex. It is comprised of three different functions: Splitting a note, merging two
consecutive notes and altering the pitch of the node.
As can be seen in the code example below the selection of the operation is chosen randomly (Listing 26):

(defmethod chops/->operator ::music-mutation

[{:keys [::chops/rate ::chops/random-func] :as cfg}]

(fn [_ pop]

(mapv

(fn [c]

(let [measures (music/chromo->measures-count (:genes c))]

(reduce

(fn [{:keys [genes] :as c} _]

(if (> rate (random-func))

(let [r (rand-int 3)]

(condp = r

0

(assoc c :genes (ops/alter-random-note-pitch genes))

1

(assoc c :genes (ops/merge-random-note genes))

2

(assoc c :genes (ops/split-random-note genes))))

c)) c (range (* 4 measures))))) pop)))

Listing 26: Mutation operators

To increase the chance of getting the genes mutated we are multiplying the number of measures by four.
This also ensures that the mutations are proportional to the length of the track and there is a significant
chance getting some genetic diversity.
When splitting a note, the index of a random note and the one that follows it are selected. In the middle
index of those two notes there is a prolongation gene (-2). The prolongation is altered to a pitch the value
of which will be randomly chosen out of 5 values, starting with a tone down, semitone down, same value,
or semitone up or tone up. In numeric values that is a random value in [-2, 2] which is added to the pitch
of the first note.
The implementation of note splitting is done with the use of a helper function (Listing 27):

(defn split-note [c note-idx]

(assert (not= -2 (c note-idx))

(str "note a note at idx " note-idx " on " c))

(let [l (calc-note-length c note-idx)]

(if (= l 1)

c

(let [p (c note-idx)

p' (+ -2 (rand-int 5) p)]

(assoc c (+ note-idx (/ l 2)) p')))))

Listing 27: Split note helper function

30

3 Evolutionary Music

The actual function is the following (Listing 28):

(defn split-random-note [c]

(let [times (muse/calc-note-times c)

note (->> times

(filter #(note? (:note %)))

(filter #(>= (:duration %) 4))

shuffle

first)]

(if note

(split-note c (:index note))

c)))

Listing 28: Split random note

The helper function calc-note-times has already been explained in the helpers section (3.6.1).
As randomness is involved (shuffle function), the output can vary each time. To reduce verbosity just
the first 16 notes are taken in the following example (Listing 29):

(take 16 (split-random-note muse/c1))

=> (60 -2 -2 -2 58 -2 -2 -2 60 -2 -2 -2 -2 -2 -2 -2)

Listing 29: Splitting random note example

In this example, between the C4 (60) notes at indexes 0 and 8, we are adding a split note at index 4 that
has moved one tone down (-2).
Merging notes is the opposite operation of splitting notes. It is finding a note and its next one and the next
one is removed by switching to a prolongation. The important bit, as previously, is the fact that we will
only merge notes of short durations. For this example we will switch to a different chromosome (Listing
30):

(def c2 [62 64 67 -2 -1 -2 -2 -2 67 -2 69 -2 -2 -2 -2 -2])

Listing 30: Chromosome #2

Applying merge notes to it can in some cases produce the following (Listing 31):

(take 16 (merge-notes muse/c2))

=> (62 -2 67 -2 -1 -2 -2 -2 67 -2 69 -2 -2 -2 -2 -2)

Listing 31: Merge notes example

In this case we see the note at index 1 has been switched to a prolongation. It should be noted that this
chromosome cannot be produced by Evolduo as the smallest note that can be split is a quarter.
Altering the pitch is a simple function and it will change the pitch of a value 1 or 2 semitones up or down.

31

Chapter 3

Figure 6: Broken chromosome

3.7 Fixing broken chromosomes

In some cases the genetic operators can produce invalid chromosomes. Invalid chromosomes are those
that can’t be rendered to ABC because their structure has very short or very long notes. This can result
into audible inconsistencies which ideally should be avoided.
Lets consider the following simplified example (Listing 32):

(def c3 [64 -2 -2 -2 -2 -2 -2 69 62 -2 -2 -2 60 -2 -2 -2

60 -2 -2 -2 67 -2 -2 -2 62 -2 -2 -2 67 -2 -2 -2]

Listing 32: Broken Chromosome Demo

The staff representation of chromosome c3 is shown in Figure 6.
Someone that has familiarity with reading staff notation will instantly realize that the first measure is not
correct. The second note, should be an eight instead of a sixteenth, or there should be a sixteenth rest
present. In Evolduo terms, those note times are 6, 1, 4, 4 respectively, which, if summed produce 15
instead of 16.
This is a known problem that isn’t visible in practice as mutation will not be allowed to generate 16th
notes, and as mutation is happening after crossover this result is also not possible.
A problem the algorithm will fix during a post-processing step is the case where a note will be extended
and it will consume a note from the next measure. In the c3 (Listing 32) example if the note at index 12
was selected, this C4 (60) would be extended and the following C4 would be changed to a prolongation.
As such, the 2nd measure would start with a prolongation which for the algorithm would mean one of the
two possible things, either that the previous note is prolonged to the 2nd measure, or that the 2nd note is
transformed into a rest. Neither of those two things are supported at the moment. For simplicity reasons
the processing is happening at the measure level and rests are not supported right now.
Let’s consider a slightly altered case of c3 (Listing 33):

(def c4 [64 -2 -2 -2 -2 -2 -2 69 62 -2 -2 -2 60 -2 -2 -2

-2 -2 -2 -2 67 -2 -2 -2 62 -2 -2 -2 67 -2 -2 -2]

Listing 33: Invalid Measure Times

If we are to to apply the maybe-fix function to c4 we would have the following output (Listing 34):

(maybe-fix {:key "C"} c4)

=> [64 -2 -2 -2 -2 -2 -2 69 62 -2 -2 -2 60 -2 -2 -2

60 -2 -2 -2 67 -2 -2 -2 62 -2 -2 -2 67 -2 -2 -2]

32

3 Evolutionary Music

Listing 34: Fixing Invalid Measure Times

In this example all measures that start with a prolongation will be changed to the root note of the key.
We see that the note at index 16 has been changed to C4 (60). This is the simplest possible solution to
this problem and there are other ways to tackle this. From using a rest, as mentioned above, to setting it
to a value that would consider previous and next notes as well as the mode that track is at so we can use
a safe diatonic note. For shorter notes we could just use any in between pitch as a passing note. Those
solutions will be considered as future enhancements for this project.

3.8 Fitness Function

In evolutionary algorithms fitness function determines how suitable is a given candidate to survive.
In this problem, fitness determines how good a musical phrase is according to the underlying chord
progression. There are many formal musical rules that someone can take into account when evaluating
music. The diatonic notes can serve as a good basis to create some music that will sound good to the
majority of the listeners. This is usually not enough, and we need to employ more intelligent rules to
create something that will have character, something that as Joe Pass says, is worth remembering. The
fitness function of Evolduo was inspired by a number of diverse resources, ranging from music theory
books to guitar lessons [11, 1, 12, 13]. It should be taken into account that the music rules are following
author’s music preferences and intuition.
The fitness function in Evolduo is comprised of three different sub-functions:

1. Scale score

2. Last note score

3. Note/chord score

In the following sections the function of those three rules will be documented.

3.8.1 Analyzing chromosomes

While doing a preliminary analysis of chromosomes is not necessarily needed, it can simplify further
calculations. The analysis step converts the notes of a chromosome into a data structure with all the
necessary data to the follow up tasks. For example, let’s assume we have the chromosome from Listing
22.
Performing an analysis will produce the following data structure (Listing 35):

(take 2 (analyze {:key "C" :mode "major" :duration 8

:progression "I-IV-V-I" :repetitions 1} c1))

=>

({:note 60,

:duration 8,

:index 0,

:chord #{60 64 67},

33

Chapter 3

:oct-note 0,

:oct-chord #{0 7 4},

:type :note,

:measure-last-note? false}

{:note 60,

:duration 8,

:index 7,

:chord #{60 64 67},

:oct-note 0,

:oct-chord #{0 7 4},

:type :note,

:measure-last-note? true})

Listing 35: Analyzing a chromosome

For simplicity, only the first 2 elements are taken from the analyzed sequence.
As can be seen the first two notes have the same pitch (60), duration (8, which is 8 sixteenths, meaning
a half), type etc. The oct-note and oct-chord provide the same information as note and chord, with
the different that those are transferred to the 1st octave (after a modulo 12). Reduction to the first octave
assists with calculation of notes that have the same pitch in a different octaves. C4 and C5 are considered
identical, which is an oversimplification. This will be revisited in the future work of this project.

3.8.2 Scale score

Scale score provides a small score compares to the other two functions explained in the next sections, but
it can assist in evaluating chromosomes in minimal setups, for example having a repeating I chord with
just the root note, doesn’t give much to work with. In such scenarios the other note/chord filter will not
be able to give significant measurements.
Scale score will determine how many of the notes fall into the track’s scale, multiplying those by 2 and
subtracting from the total notes. This small adjustment helps with balancing scores and having a way to
provide negative values. For example in the c1 example above (Listing 22) calculating the scale score
would give a value of 5 (5 * 2 - 5). If we assume the first note was out of key, e.g. C#, then the score
would be 3 (4 * 2 - 5). If all of the notes were out of key we would get -5 and so on.

3.8.3 Measure’s last note score

The last note is, in many cases, the most important note. In many styles of music the last note tend to be
the root, 3rd or 5th of the key and it is the note the listener will remember. A contrary example would be
a 7th which would leave a non-resolved, incomplete feeling.
As described in section 3.8.1, after analysis, the fetching of last notes is just a matter of filtering and
calculating the score is just the sum of weighted values, where weight is the duration of the note. The
longer the note the more notable is its presence.
While analyzing the last note of each measure can feel incorrect, as some measure’s notes may just be
continuing in the next one without their last notes being as important as the final notes of a phrase (that
can be comprised of multiple measures), it is kept like this for simplicity.

34

3 Evolutionary Music

Calculating the last note score is presented below (Listing 36):

(def last-note-duration-weight 5)

(defn calc-last-note-score [{:keys [duration oct-note oct-chord type]}]

(if (and (= type :note)

(oct-chord oct-note))

(* duration last-note-duration-weight

(condp = oct-note

0 1 ;; root

3 0.7 ;; minor 3rd

4 0.7 ;; major 3rd

7 0.5 ;; 5th

10 -1 ;; minor 7th

11 -1 ;; major 7th

0))

0)

Listing 36: Calculating last note score

Here we see that root, 3rd and 5th are taking a score of 1, 0.7 and 0.5 respectively as 3rds and 5ths are
providing an interesting closing option. Sevenths are penaltized with -1 as they produce an unresolved
effect. Those values are multiplied by a weight of 5 and, to increase even more the significance of this
rule, by the note duration. As a reminder, a whole note will have a value of 16, half 8, etc.
Calculating the overall score becomes as simple as (Listing 37):

(defn calc-last-notes-score [analyzed-notes]

(->> analyzed-notes

(filter :measure-last-note?)

(map calc-last-note-score)

(apply +)))

Listing 37: Calcuating all last notes scores

In our example the c1 chromosome will get a last note score of 40, as only the 2nd note (which is the last
of the phrase) matches the chord. This note has a duration of 8 which, when multiplied by the weight of
5, produces 40.

3.8.4 Note/Chord score

Note/Chord score rule will penaltize each note that doesn’t match the chord. This filter will give a max
score of 0 in the case that all notes that are played are chord notes of the underlying progression.
Once again, this value is simple to compute as we have all the necessary data after analysis (Listing 38):

(defn calc-chord-note-score [analyzed-notes]

(reduce (fn [acc {:keys [duration type oct-chord oct-note]}]

35

Chapter 3

Figure 7: Rating options

(if (and (= type :note)

(not (oct-chord oct-note)))

(- acc duration)

acc)) 0 analyzed-notes))

Listing 38: Chord notes score

In this example, c1 will get a score of -48 because only the first two notes match the chords, and the next
three, each of which has a whole (16) duration will be penaltized, thus, 3 * 16 = 48.

3.8.5 Adjusting fitness score

Evolduo is a platform that also enables users to adjust system’s evaluation and potentially perform those
actions with the collaboration of other users. This is not a novel idea[14], even though in the majority of
other works users don’t have those options.
As described previously, fitness is the summed score of three rules that were covered in previous sections
(3.8.2, 3.8.3 and 3.8.4).
The fitness produced by the system will be adjusted by the ratings provided by the users.
As can be seen in Figure 7 users have five choices when rating a track. Those choices will produce a
value in [-2, 2]. Voting on the middle face has zero effect on the fitness. Voting on the rightmost face
doubles the effect comparing to be 4th face etc. As ratings from different users can be provided on the
same track, there is a chance, in the case their opinions differ, their ratings will be cancelling each other
out.
Initially, there were no calculated stats for each iteration, in which case the summed user rating would be
multiplied by 0.2 and the fitness rating. For example, if out of 5 users 4 of them greatly liked the track
and one greatly disliked it, we would get a chromosome-rating of 8 (5 * 2 + 1 * -2). If the fitness rating of
the chromosome was 50, the adjusted value would be 8 * 0.2 * 50 = 80. The problem with this formula
was that when fitness ratings would be close to zero, users’ ratings would provide insignificant bias. If
the fitness was 0, which is likely as there are parts that produce positive and negative values which when

36

3 Evolutionary Music

summed, the adjusted fitness could be a value around zero.
Adjusting this calculation by taking into account min and max fitness values of the entire population of
the current iteration is mitigating this issue. In the example above, even if the fitness was zero, the best
rating was 100 and the worst 0, we will get a balanced weight (see *diff in the code snippet below) of
25. This will push the rating to 200 (8 * 25), thus making this track twice as good as the best track of the
current population (in evolutionary rating terms).
In case min and max are around 0, or very low to produce a significant weight, a constant of 10 is used.
For example, a min of 0 and a max of 16 will produce a weight of 4, which when below 5 will be ignored.
The formula for calculating the adjusted fitness is shown below (Listing 39):

(defn calc-adjusted-fitness [ratings stats chromosome]

(let [chromosome-rating (get ratings (:id chromosome) 0)]

(math/round

(+ (:fitness chromosome)

;; backwards compatibility

(if stats

(let [{:keys [min max]} stats

*diff (/ (- max min) 4)]

(*

chromosome-rating

(if (< *diff 5)

10

*diff)))

(* 0.2

chromosome-rating

(abs (:fitness chromosome))))))))

Listing 39: Adjusting fitness rating

3.9 Tackling bias

Bias is an unavoidable side-effect of any work concerning art. There are too many factors that can alter
the way users perceive the same information. Those factors can be unrelated to the piece of art itself but
still influence user’s opinion. Tackling bias is not a trivial problem as it can differ between individuals.
Evolduo does a number of things to reduce potential user bias.
When users are rating tracks they don’t see the system’s fitness rating. People would easily create links
between similar tracks, system’s evaluations and their scores.
For the same reason, the tracks of an iteration are deterministically shuffled. It’s more likely users will
listen the tracks in order, from top to bottom. Any score related sorting would potentially introduce a bias
of “tracks on the top are better” etc. The shuffling is deterministic to ensure that upon refresh the track
ordering remains the same. As a small extra enhancement in this space, shuffling seed is also taking the
user id into account so different users are presented with different track orderings. This will help different
tracks from the same iteration getting ratings, instead of users rating the same tracks.

37

Chapter 3

User’s also don’t see other users’ interactions on the same track. Users don’t know if someone has liked
or not a track, and neither if there are any interactions at all. The last one is a questionable choice as
giving a hint could also trigger user’s interest.

38

4 Feedback and Results

22-06 22-06 22-07 22-08 22-09 22-10 22-11 22-12 23-01 23-02 23-03 23-04 23-04

0

10

20

Figure 8: User registrations per month

Chapter 4: Feedback and Results

4.1 Announcement

Evolduo was announced on October 22, 2022 on Clojurians Slack42 and a few days later (October 28)
an announcement was posted on Department of Information and Electronic Engineering of International
Hellenic University (IHU) announcement board43. Those two announcements brought the majority of
users that used the platform. During that time, Evolduo’s release announcement was also shared on
social networking platforms like Facebook and Twitter, but given the specialized nature of this project it
didn’t had a significant impact regarding the usage of the platform. Those days usage was monitored at
the database level and an extra caution was given to error monitoring.
Evolduo wasn’t announced on social networks that had a broader or more specialized scope, such as
Reddit, for two reasons. The first had to do with potential errors that could occur on the platform that
would be easier to fix without impacting too many users if the usage was limited. The second had to do
with reserving the potential announcement for the future, after having collected feedback from the first
group of users. It should be noted that the majority of the initial registrations were author’s friends who
could be available for a direct communication, in case some details were needed. In the next section
(4.2), excerpts of discussions will be presented.
After the announcement the usage period was timeboxed to 3 months. Per author’s view, this time was
considered enough for the platform to be used to some extent. After that, feedback and usage statistics
would be analyzed.
At the end of the first 3 month period, Evolduo was also presented on Thessaloniki’s Not Only Java
meetup group44. A complementary announcement was posted on IHU’s announcement board45. On this
event, about 25 people were present and the feedback was positive. This brought a fewmore registrations.
After that the platform wasn’t used at all to the time of this writing (Figure 8 and Figure 9).

42https://clojurians.slack.com/archives/C06MAR553/p1666422516983289
43https://www.iee.ihu.gr/ζήστε-την-μουσική-σύνθεση-χωρίς-απαρα/
44https://www.meetup.com/thessaloniki-not-only-java/events/290282680/
45https://www.iee.ihu.gr/εκδήλωση-του-thessaloniki-not-only-java-meetup-group-με-θέμα-την-πλατφ/

39

https://clojurians.slack.com/archives/C06MAR553/p1666422516983289
https://www.iee.ihu.gr/%CE%B6%CE%AE%CF%83%CF%84%CE%B5-%CF%84%CE%B7%CE%BD-%CE%BC%CE%BF%CF%85%CF%83%CE%B9%CE%BA%CE%AE-%CF%83%CF%8D%CE%BD%CE%B8%CE%B5%CF%83%CE%B7-%CF%87%CF%89%CF%81%CE%AF%CF%82-%CE%B1%CF%80%CE%B1%CF%81%CE%B1/
https://www.meetup.com/thessaloniki-not-only-java/events/290282680/
https://www.iee.ihu.gr/εκδήλωση-του-thessaloniki-not-only-java-meetup-group-με-θέμα-την-πλατφ/

Chapter 4

22-09 22-10 22-11 22-12 23-01 23-02 23-03 23-04

0

10

20

30

Figure 9: Created evolutions per month

Figure 10: Jump to iteration component

4.2 Feedback

A number of friends provided feedback during the development of this project, during the time of the
release and after the project was released.

4.2.1 User Interface

User experience is essential for any non trivial web project and with Evolduo having a very complex
set of initial parameters, users reported that it was confusing and off-puting to make an initial selection.
Based on this feedback, presets were introduced. Preset is not a unique feature to Evolduo, many complex
projects try to simplify configuration by providing a predefined set of initial values.
During the development of the project Kostas K., who specializes in User Interface and User Experience
(UI/UX) was providing feedback for the UI of the project. As Evolduo was deployed to a publicly
accessible VPS after 6 months since the development was started, the feedback was based on screenshot
exchange.
Stathis S. said that the navigation of iterations was the part that confused him the most, it was unclear
for him to understand where he was in the evolution process, and that he would prefer having the ability
to see the list of past iterations as well as the ones that the process didn’t had reach yet. Based on this
feedback the “Jump to iteration” UI component rendered all the iterations with the ones not reached yet
being displayed as disabled (Figure 10).

4.2.2 Music

Angelos K. was the first person to test the project and provide feedback. Some of his initial reactions
and thoughts concerned the ability to have an extended variety of music instruments to choose, larger
set of keys - which was restricted to just C at the time because of a chord construction bug, and later,

40

4 Feedback and Results

he suggested that an alternative configuration for the way the rhythm melody was produced would be a
good option to have. “The left kind of piano hand that constantly bounces an octave up and down can
feel repetitive, it would be nice to provide an alternative where the chord would just be a pad or synth
like sound playing for the entire measure”, he said.
An additional idea that Angelos mentioned related to the integration of Evolduo with existing music and
audio production tools. “It would be interesting to have Evolduo as a VST, something that we can plug
into a Digital Audio Workstation (DAW)”.
During the initial months of the development, Evolduo would generate two separate music voices for a
track, one for the melody and the other for the rhythm. After that it was discovered that ABC.js could
generate the rhythm by just annotating the measure with the chord name. This was a tempting feature
to use as it would remove the necessity of each track having two voices, the second of which would not
provide much value as it would be the chords of the progression. The flip side to this choice was the
fact that the chord construction was implemented (3.4.3), and an option to allow users to select different
rhythm patterns would be a useful feature.
Stelios M. provided a big set of ratings and he said that the navigation was the bit that confused him the
most. He had a hard time pinpointing the track that he rated before, as he would like to continue listening
the next one. This issue was addressed by provided a link to the track that was just rated by the user. He
also mentioned that phrygian and locrian modes sounded better to him, especially at high BPM tempos
(> 200). This is a good indication that some of the generated tracks can provide a feeling that relates to
the musical preferences of the user.
Michael W. opened a github issue46 and suggested to create a way to have completely random tracks that
the user could rate. This could help with the bias problem (3.9) as he perceived all subsequent tracks
being better comparing to the previous ones. This wasn’t to suggest that the algorithm did a good job on
improving the tracks as much as his “musical expectations where ’preloaded’ in his brain.
Discussion around those points and potential ways to address the aforementioned issues will be presented
in the next chapter (5).

4.2.3 Standalone

Another interesting idea people shared, was the potential ability of Evolduo running on a standalone
device e.g. a Raspberry PI. As recent Raspberry PIs are capable of running non trivial programs, Evolduo
could run on one. This would need some additional work to create a hardware interface to it. Instead of
controlling it via a browser, this time, it would need hardware knobs and potentiometers, which would
adjust the same controls as one would on the UI. The current form of Evolduo is not suitable for such a
task, but potential alternative directions (such as the one presented in section 5.3.7) could work well with
this approach. This would enable people using Evolduo similarly as a guitarist would use a guitar pedal
effect.

4.2.4 Configuration

Evolduo was presented to a number of people from diverse backgrounds through in-person sessions or
video conferences. Almost everyone expressed their confusion regarding the numerous options on the
Evolution creation page, as most of the options meant nothing to them.

46https://github.com/kongeor/evolduo-app/issues/1

41

https://github.com/kongeor/evolduo-app/issues/1

Chapter 4

Entity Count
Users 33

Evolutions 44
Iterations 344

Chromosomes 7018
Ratings 249

Invitations 1
Invited users ratings 0

Table 1: Usage statistics

evolution population iterations crossover mutation progression repetitions
#78 20 40 20% 30% VI-II-V-I 4
#71 40 50 12% 30% I-I-I-I 2
#70 30 50 5% 90% I-V-VI-III-IV-I-IV-V 4

Table 2: Sample evolutions

4.3 Results

Evolduo was used mainly from the day of its release announcement on 22th of October 2022 until the
end of January of 2023. The number of different entities that were created on the platform can be seen
on Table 1. It should come to no surprise that without putting effort into making some fuss on social
networking platform or user groups, those sorts of projects don’t get much traction. There is a case of a
user who probably discovered the platform via the github page, but those are very rare occasions and one
can’t expect more than a handful of users per year that discover this project by themselves.
On the evolutionary algorithms side, Evolduo is performing as expected. In Figure 11 the best and mean
fitness values of an evolution can be observed. For the iteration count, which is not big, as expected there
is a constant improvement on both metrics. Evolution #78 has normal genetic configuration without any
extremes. Evolution #71 is similar to #78 and its iteration chart can bee seen in Figure 12. What is
interesting here, is the fact that even though Evolution #71 has less repetitions the top rated tracks have
a similar rating to the #78 (~200-225).
In the case of extreme configuration such as the one in Figure 13 the progress is drastically different.
A mutation rate this big (90%) “corrupts” all the best solutions the population has and the tournament
selector fails to preserve the best individuals.
In Figure 14 we can see the user rating distribution of the 249 ratings. It’s interesting to see that users
tend to avoid greatly favoring or not favoring a track and usually picked the in-between choices. This
may be an indication of average results.
In Figure 15 we can see how the ratings are distributed progress wise. It should be noted to generate
those statistics, we need to compensate for the difference in the number of iterations for each evolution.
For an evolution of total 20 iterations, a rating at the 10th falls under the 50% of the progress. On an
evolution that has 40, for a rating to fall under the 50% bucket we need to be around the 20th iteration.
The corresponding SQL for generating this diagram can be found on Listing 41.
On this diagram it’s clearly visible that the majority of users will give up rating after the first iterations.

42

4 Feedback and Results

0 10 20 30 40
−50

0

50

100

150

200

iteration

f
it
n
es
s

best
mean

Figure 11: Evolution #78 progress

0 10 20 30 40 50
−50
−25

0
25
50
75

100
125
150
175
200
225

iteration

f
it
n
es
s

best
mean

Figure 12: Evolution #71 progress

0 10 20 30 40 50
−375

−350

−325

−300

−275

−250

iteration

f
it
n
es
s best

mean

Figure 13: Evolution #70 progress

43

Chapter 4

−2 −1 0 1 2

0

20

40

60

80

Figure 14: User rating distribution

10% 20% 30% 40% 50% 60% 70%

0

50

100

150

200

Figure 15: User rating aggregation per evolution progress (balanced)

44

4 Feedback and Results

0 2 4 6 8 10

0

50

100

Figure 16: User rating aggregation at first 10% of the process (balanced)

In Figure 16 we see a breakdown of the first 10%, and once again we see that the majority of the ratings
are concentrated on the first iteration. This shows that users will give up after the first iteration, something
that may be attributed to a number of different reasons that will be explained in the next chapter (5).

45

Chapter 5

Chapter 5: Discussion and Future Work

5.1 Discussion

5.1.1 Evolutionary Algorithms

For music generative tasks evolutionary algorithms provide an interesting tool. The nature of EAs and
their ability to explore different solutions for a particular problem, especially a problem where a perfect
solution is unfeasible or not required, gives an interesting set of results. Using proper configuration,
like tournament selector which avoids choosing the same solutions, thus maintaining genetic diversity,
it becomes evident that even after some generations the algorithm doesn’t get stuck to a local minimum
(e.g. Figure 11).
Crossover allows for combining potentially good solutions that exist in the population. Sometimes there
is a feeling that a track starts in a nice way but doesn’t end well, or vice versa. Crossover can potentially
fix that.
Mutation helps with deviating from the initially musically correct yet monotonousmelody towards amore
unpredictable and captivating composition. Shifting notes to their adjacent pitches helps exploring the
non diatonic areas of the track effectively capturing the user’s attention. Despite the occasional occurrence
of non-diatonic notes sounding like out-of-key errors, the algorithm remains capable of adjusting them
in subsequent generations. Moreover, it can combine them with other not ideal solutions to produce
something that is interesting.
The other EA settings, such as population size and random generator functions appear to be sufficiently
appropriate for this problem, and they do not appear to require any modifications.

5.1.2 Fitness

The three functions that comprise the fitness calculation seems to enable the exploration of different areas
as intended. The results exhibit diversity, and the fitness seems to satisfy in many cases the expectation
of what the preset or setup tries to emulate.
Allowing users to influence the fitness score of solutions in each generation provides an alternative means
of exploration. It’s expected that the algorithm, no matter how diverse, will shape a path based on its
fitness rules, but user input can shift that to a different direction.

5.1.3 Presets

Trying to encode rules that don’t focus on a particular aspect of the problem is challenging, considering
that different music styles and setups often call for distinct approaches. For instance, minimalistic music
may favor simple note durations and repetitions but complex jazz forms may require the exact opposite.
It’s interesting to observe how the current presets strive to meet the described expectations despite using
the same set of rules.

5.1.4 ABC and browser interactivity

The ABC format helped with keeping the code as simple as possible, even though, some quirks of the
ABC.js library resulted in bugs and wrong representations. Despite any issues that appeared the ABC.js

46

5 Discussion and Future Work

was essential for this work as it facilitated a seamless integration into the web application, and enabled
users to experience the musical tracks with a simple button press.

5.2 Challenges

5.2.1 Complex configuration

Evolduo is a complex software application, even though it is designed as a web app, it encompasses a
substantial amount of preparation and setup to fully experience its functionalities. It goes beyond being a
simple application in terms of its intricacy and involved processes. It is targeting a very specific audience,
which is primarily musicians. The majority of options are music related aspects, reflecting the primary
focus of this work in exploring the musical domain. While the presence of presets attempts to make the
application more accessible to users without a music background, the availability of only four presets can
be seen as a very limited set of options.
Musicians, who seek to get the most out of this application, may find the extensive EA settings over-
whelming, particularly for those without a background in computer science or artificial intelligence.
Given the extensive range of options and combinations, comprehending and exploring all the capabilities
of this application would require significant effort and time. The sheer number of meaningful combina-
tions is overwhelming. Unless a user has a very specific interest or, potentially, something to gain from
this app, it’s unlikely that someone will keep using it.

5.2.2 Time consuming

Evolduo, even in the simplest of cases, produces a massive set of results for a single person to fully
process. For instance, a brief composition comprising only four measures at a tempo of 120 beats per
minute can yield a track lasting approximately 15 seconds. Listening to just four tracks of an iteration
consumes a minute, and when considering 10 iterations, the exploration time escalates to around 10-15
minutes, and that’s just to explore a single run of one configuration.
This is one of the reasons people give up very quickly, preventing them from seeing the evolved tracks
reaching their full potential, which, in theory, should occur towards the end of the evolution process. As
depicted in Figure 11 the evolution keeps progressing but users usually give up before reaching the end.
Another reason for this is that tracks depicted can feel repetitive and, when considering the waiting time
in between iterations, it’s understandable for people to get easily bored and subsequently give up.

5.2.3 Keeping users engaged

Musicians may find interest, or even practical use, in this app, but for people with no music creation or
education background Evolduo is not an easily appealing.
It’s not clear what would be a better way to engage users. Typically, users revisit an application with
certain expectations, such as the completion of a scheduled task and a desire to observe the resulting
outcome. Users may also return to provide feedback on their own creations or collaborations, seeking
to witness how things have developed. Additionally, email notifications can serve as prompts, notifying
users of updates or progress related to their involvement.
Despite all the possibilities available in Evolduo, it’s not clear how to effectively trigger users’ interest
and make them return to the application.

47

Chapter 5

Bugging constantly users with emails usually has the opposite effect, which is the reason why Evolduo
uses email notifications only for the most necessary tasks (email verification, password reset, etc.).

5.2.4 What should an AI music community look like

Evolduo has a feature set that enables building a simple community of users around their interest. People
can create tracks, invite others, and co-evolve music, but this fails to generate a sense of engagement.
Figures 15 and 16 clearly demonstrate that users give up just right after creating a track or providing their
first rating.
One possible explanation for this lack of engagement is that the user interaction is intentionally kept trans-
parent to mitigate potential bias. As a result, users may not perceive themselves as actively participating
with others in a collaborative process.
In a system like Evolduo producing a feeling of reward is potentially possible, but it’s not clear how to
make the social factor engaging to users while maintaining the same properties of the site (AI generated
music, exploring a vast set of options etc.).

5.2.5 Supporting a software project

Supporting a software project can be job in itself.
Software requires maintenance, fixing bugs, adding features, addressing security flows, monitoring the
announcements of potential CVEs etc. This needs a lot of time.
Additionally, software, and any kind of project, needs to effectively communicate their existence to others.
Engaging with people, going to meetup groups or just communicating with people that is also something
that requires a lot of time and energy.

5.3 Future Work

5.3.1 EA settings

The initial chromosomes in Evolduo consist of randomly selected notes derived from the underlying chord
progression. This design decision aims to provide a starting point that sounds good enough, reducing the
number of iterations required to achieve audibly pleasing results. While this is a reasonable choice for this
project, it remains uncertain what would happen in alternative initialization cases. Would a completely
random initial chromosome be that bad for users? Would it potentially require 10-20 generations to reach
a satisfactory outcome?
The initial design of Evolduo took a conservative approach providing satisfactory results with a small
number of iterations.
An alternative approach in this context, would be to use actual music phrases from common pop, rock,
jazz or even classical music tracks. Would this approach generate more interesting alternatives or would
the algorithm distort the original and phrases and generate its own unique variations?
One way to alleviate the trouble of users going through every single iteration, which as seen in the pre-
vious chapter leads to user fatigue (Figures 15 and 16), would be to offer users the option to observe the
evolution process every 10, 20, 50 or even 100 iterations. This way the increments between what the users
observe would be more significant potentially enhancing their engagement and making their experience
more efficient, avoiding repetitive or similar outputs. Additionally, this approach would investigate the

48

5 Discussion and Future Work

convergence points and the limits of the evolutionary process. Currently, convergence is not observed
due to the limited number of iterations users can select. It’s almost certain that after several hundreds or
thousands of iterations the process would converge to some, probably local, optimum.
A single point crossover operator effectively accomplishes recombination, but it could be interesting to
explore multi-point crossover as it could produce more diverse results.

5.3.2 Fixing broken chromosomes

In Evolduo, there is a possibility of encountering broken chromosomes, but the extent of their impact and
functionality has not been extensively explored. but it is something that hasn’t been extensively explored
to see how it actually works. The current functionality of the system ensures the process doesn’t run
into problems that could eventually lead to something that can’t be represented in ABC.js. However, it
remains unclear how often this phenomenon occurs. This process is also simplistic as it’s not needed, or
not needed that much, but if more complex setups are explored in the future, it might become necessary to
incorporate a more sophisticated approach to deal with broken chromosomes, which would be beneficial
for the overall system.

5.3.3 Fitness

The fitness function works well enough to produce interesting outcomes but it relies on the use of arbi-
trary rules. Based on the outcomes, those rules appear to be reasonable enough but a more precise and
systematic approach in this domain would be beneficial.
As mentioned previously the use of known musical phrases as a starting point for the evolution process
in Evolduo could be an interesting approach. However, these same tracks could also be employed to
evaluate the fitness function’s assessment of existing music. This work could be potentially expanded by
utilizing A/B tests of actual music phrases with those generated by Evolduo. Users could then participate
in a voting process to indicate their preferences. The statistics from these tests could assist in fine-tuning
the fitness function based on user preferences which consequently would produce music that would be
more interesting for people to listen to.
User’s fitness adjustment was also implemented in Evolduo based on author’s intuition regarding the
impact of user input. There are many open questions in this area that could be explored further. By
conducting investigations and studies, the process could be tuned to provide a more effective bias to
Evolduo’s fitness rating.
Should neutral judgments have any impact on the fitness evaluation? While user input is valuable and
should be taken into account, it is also crucial to respect the notion of neutrality. A neutral rating indicates
that the user has no specific opinion or preference and this indication should be recognized and considered
as a separate category in the evaluation. Ignoring neutral judgments entirely may not be ideal, as they
provide valuable information about the user’s perspective. Therefore, it is important to incorporate a
mechanism that appropriately handles neutral ratings, allowing them to influence the fitness evaluation
in a distinct and meaningful manner.
To what extent do the user ratings influence the evaluation process? Does their influence exceed what
is considered appropriate? If two users highly rate a track will it displace any other track the system
identifies as the best. The limited number of user ratings available makes it difficult to draw definitive
conclusions in this domain.

49

Chapter 5

5.3.4 Music

Evolduo offers four presents, that range from minimal to experimental, which serve to initialize the set-
tings and align the music with the desired style. However, to prevent operating as a black box, users
are also provided the flexibility to customize these settings according to their preferences. Despite the
convenience of this feature, user feedback (4.2.4) indicates that it is still very confusing. There are way
too many options and those are very specific to music and EA. As the majority of users do not have the
necessary background to understand all the available options, or do not want to explore them, landing on
a page with many sliders, drop-down menus and checkboxes can be discouraging.
An alternative approach could be to hide all those options behind an “advanced” link, same as search
engines do, and provide a user-friendly wizard that could assist users in setting up their Evolution process
based on concepts they understand. For example, users could be asked what kind of feeling should the
produced music give. If they choose “happy”, the system will select a major or a mixolydian mode. On
the other hand, if they select “mellow”, aolian mode will be selected, while "dark" could correspond to
the phrygian mode, and so on. Some questions could apply to multiple settings, e.g. track length could
be affecting the tempo, repetitions and the chord progression. A further potential enhancement that could
also collerate to fitness tuning and chromosome initialization from previous sections (5.3.1 and 5.3.3),
would be to ask users what they would like the produced music to sound like, based on a genre, an
artist or a song. These enhancements are not trivial and could significantly improve the usability of the
application.
Currently, there are several music concepts that are not supported within the application. The support for
rests is probably the first enhancement in this area that should be addressed. Rests are elementary in all
kinds of music and the current chromosome format supports it. What is less trivial is to incorporate rests
into the EA operators and it becomes even more challenging to adjust the rules described in section 3.8
to take rests into consideration. As soon as those details are defined, support for rests could be added
without requiring radical changes offering users more comprehensive musical composition capabilities.
Currently, Evolduo is limited to supporting only a 4/4 time signature. Expanding its capabilities to include
time signatures such as 3/4, 2/4, 7/8 etc. would be an interesting addition. This modification would
have implications for the EA processing and fitness evaluation, but it should be feasible to implement
without requiring extensive changes. Different time signatures would offer users more diverse rhythmic
possibilities.
Support for triplets would also be a nice enhancement, but it is unclear how it should be handled. Most
likely with the addition of a different gene code that is similar to the rest gene value (-1). The problemwith
triplets is the complication of genetic operators as triplets can’t be easily represented. For example, a 60
gene followed by 7 prolongations is representing a half note. A half note is the equivalent of three groups
of 8th triplets. Addressing this issue would require modifying the rest gene and most likely introducing
an additional marker gene that will change the time conversion of notes. At this moment it’s not clear
what would be an optimal representation for this information.
Evolduo incorporates seven common modes used in western music offering a substantial exploration
space when combined with other settings. However, there are several potential extensions that could be
implemented to further enhance the system’s capabilities. There could be added more modes, especially
modes that are found in traditional music like harmonic minor scales, pentatonics, blues scales, or altered
scales (e.g. altered phrygian dominant). An option could be added for combining different scales for the

50

5 Discussion and Future Work

chord construction and the melody generation. For example a major mode could be used for chords with
the combination of a pentatonic for the melody, a common setting found in blues and rock music.
In its current state, chord progression is a crucial setting in Evolduo, as well as in music composition in
general. The impact and significance of chord progressions in shaping chromosomes are evident within
the system. Moreover chord progressions define the length of the chromosome. With the minimum
length set at 4 chords and the maximum at 16, it’s clear that different settings produce radically different
results. For simplicity Evolduo offers a predefined selection of common chord progressions (I-IV-V-I,
II-V-I etc.) but as the processing algorithm is generic enough there are no inherent limitations to working
with arbitrary, and potentially contrived, progressions.
Currently, each chord in the progression plays for an entire measure. This is very practical from the
calculations stand point, but it would be interesting to explore the potential impact of incorporating more
complex progressions. For example, one of the most commons I-IV-V-I could be expanded to I - - - / IV
- - - / V - - - / I - - - which would allow for adding customizations at the quarter level e.g. I - V - / IV - - -
/ V - VII - / I - - -, where dash (-) represents the extension of time of the chord. In the previous case, in
the 1st measure the I chord would be played for a half (two quarters). This would enable the addition of
passing chords that could make the progression much more interesting.
The current chord construction is also quite limited. Presently, the same chord construction applies to
all chords within the progression. Support for customizing individual chords could be easily added, for
example instead of having all chords being 7ths, the progression could denote which one should be a 7th
chord e.g. I - IV - V7 - I. This will require some extension in the parsing mechanism but the functionality
is already there. Similarly chord inversions could be added e.g. V7/5 a 7th five chord with the 5th in the
bass. Although it would require some modifications to the chord construction process, in general it is a
straightforward modification.
Combing the extensions described above and adding a text field for customizing the chord progression
could be an interesting enhancement and something that could enable users to further explore the gener-
ation of AI driven music. It could also serve as a tool for musicians to have a quick and convenient way
of listening and experimenting with different chord progressions.

5.3.5 User experience and collaboration

Many of the enhancements mentioned in the previous sections will require corresponding improvements
in the user interface (UI). Currently, the UI of Evolduo is relatively simple, but it may appear overwhelm-
ing to those who are new to it. There are tables will lots of data, musical staff lists, and many terms that
can intimidate users. Therefore, it would be necessary to refine and simplify the UI of Evolduo, making
it more accessible and intuitive for all users.
Modern web applications try to be as simple as possible, especially for end users. Evolduo’s UI can
be redesigned to support a dual mode functionality. This would include the existing expert mode for
users familiar with evolutionary algorithms and music concepts, as well as a new basic mode aimed at
individuals with no prior knowledge of EA or music theory. As described already, users can answer to
simple questions like what type of mood they have or what kind of music they like and the program
can generate music accordingly in real-time. Users can then provide feedback on whether they liked the
resulting music or not. This way the application will be more accessible to a wider range of users and it
will be easier to collect more data for further improvements.
The requirement for users to sign up can potentially be another barrier, but it is necessary to prevent

51

Chapter 5

potential abuse of the service. An enhancement that could mitigate this concern would be the addition
of Single Sign-On (SSO) functionality. As mentioned in section 2.6, the decision to not include SSO
was driven by privacy considerations. However, considering that most users are already accustomed
to using social networks and their associated authentication systems, privacy concerns may not be a
sufficient reason to restrict the use of SSO in this application. By incorporating SSO, users would have
the convenience of using their existing social network accounts to sign in, reducing the need for separate
account creation and facilitating a smoother user experience.
The introduction of a wizard to initiate an interactive evolution process would not only help users engage
with the application but could also be further extended to enable collaboration with others. This will need
a restructuring of the data presentation but it would help users to stay for longer durations and utilize their
time more efficiently within the application.
Introducing a novel interaction approach where a single track is presented at a time, and transitioning to
the next iteration occurs immediately after the user rates the current track, could offer an intriguing user
experience that can also be personalized. Ratings should be taken into account not just for balancing the
fitness score, but they could also help with changing what is presented to the user. If someone rates three
consecutive iteration tracks as “very bad”, it could mean that the current evolution doesn’t match with
the user’s preferences.
The presentation of less information, could assist with tackling the bias problem which is one of the most
significant issues this project is facing.

5.3.6 Infrastructure and monitoring

The infrastructure of a system is typically adjusted based on current needs. Most of the enhancements
discussed below will be necessary as the userbase grows and the system is used constantly.
One important addition, regardless of the user base, is the implementation of Sentry’s background process
monitoring. Currently, Sentry is only logs HTTP requests, but it is essential to monitor background tasks
such as email sending and especially the evolution process. It’s important to get an insight to errors or
performance issues related to these tasks.
Adding one redundant instance when doing a deployment would help of ensure zero down-time and
prevent potential disruptions to interactive flows that could be implemented.
As these changes are not critical at the moment, they can be implemented as the project progresses and
moves forward.

5.3.7 Evolduo Live

When the idea of Evolduo was conceived and the specifications for this project were determined, there
was a basic idea regarding this project’s potential evolution to a live interaction system, something similar
to GenJam47.
Towards the end of this project a small prototype of a different mode was introduced, with the name
Evolduo Live48.
The idea behind this modification was to enable an interactive Evolution process and enable users to
modify some settings in real time (e.g. tempo, or mutation rate).

47https://genjam.org/al-biles/genjam/
48https://www.youtube.com/watch?v=7v1CTX6Cl6s

52

https://genjam.org/al-biles/genjam/
https://www.youtube.com/watch?v=7v1CTX6Cl6s

5 Discussion and Future Work

Evolduo Live can serve a different purpose, primarily assisting in reducing the feedback loop and min-
imizing the time required for the Evolution process to complete. It should be noted that the algorithmic
part of this modification remains intact and the only required changes are the introduction of a Swing UI
and a loop that enables a continuous run of the Evolution process. Intermediate results are placed into a
queue and played as a long running track.
In order to achieve this, Evolduo needs to run as a desktop application, requiring the utilization of an
external system (PureData49) to process the messages generated by Evolduo and transmit them as MIDI
events to auxiliary software or hardware devices.
While this change is an interesting alternative mode it looses some of the advantages offered by the web
version of Evolduo. The main two drawbacks are the reduced convenience for end users and the lack of
preserved data for further analysis. The setup is not trivial at all 50 and it requires additional software to
be installed, which is something that the majority of users will not do. Maintaining observability on the
data, fitness scores and user ratings is essential for this project to be improved.
The main question that remains is the possibility of combining the best aspects of both worlds. Is it
feasible to develop a web-based Live version of Evolduo? Although it would need a number of non
trivial modifications this apperas to be possible. After an initial delay users could be presented with a
track chosen by the system. As they listen to the track and provide feedback, the system would generate
a new track and play it right after the first one. There are many interesting paths in this space, as user
feedback can have an immediate impact on the Evolution process. If users find the track boring, dynamic
adjustments to EA operators could introduce variation, while if the track seems complex, it could be
directed to something simpler. To facilitate this, several UI and processing adjustments would need to be
implemented, but it seems possible. It should be noted that MIDI is supported by web browsers51 so this
shouldn’t be a barrier for integrating it with other software or hardware instruments.

5.3.8 Different user needs

Any future direction should take consideration the diverse needs of different user groups. Evolduo is a
project that caters to both musicians and AI researches. Although it primarily focus on the first category,
many EA concepts can be confusing to people with no technical, academic, or AI background. It’s
unlikely that providing documentation for those concepts will be helpful as this is not a trivial domain
within computer science.
Musicians will be more interested in exploring the musical capabilities of this project and will require a
more extensive feature set on the music side of things. They will focus on integration with external tools
and using it in real-time. The possibility of running Evolduo as a self-contained module, independent of
a desktop computer and within a web browser, is an aspect that users may desire. A potential approach
to this goal is probably using a Raspberry PI, as this would enable retaining the majority of the codebase
and the JVM runtime in its current form. This direction would align more closely with the Evolduo Live
concept and could give users with a limited set of options specifically designed for small devices with
touch screens.
On the other hand, AI researches will value observability over interactivity. Having a database containing
all program outputs would be more useful for someone who needs to perform data analysis and optimiza-

49https://puredata.info/
50https://github.com/kongeor/evolduo-app/blob/main/doc/live.md
51https://www.midi.org/17-the-mma/99-web-midi

53

https://puredata.info/
https://github.com/kongeor/evolduo-app/blob/main/doc/live.md
https://www.midi.org/17-the-mma/99-web-midi

Chapter 5

tion tasks. Step by step runs will also help users monitor the process more easily. Researchers may also
focus on the addition of more parameters on the EA side, such as more genetic operators, ways to bias
the different fitness rules, customization options for random generators etc.

5.3.9 Moving forward

Evolduo can potentially satisfy both groups, but as is often the case in software development, it will
require additional development time and increased software complexity. Whether this will happen or
not, is unknown right now, but it’s unlikely to extend this project further without an academic motivation
or monetary support. The intention, for now, is to keep the project running and potentially introduce
small improvements here and there over time.
The hope is that keeping the web application running will provide something useful to other people work-
ing in the same domain. Merely providing a thesis, documentation, or paper without the accompanying
project would result in a less than ideal experience.

54

References
[1] Joe Pass. Jazz lines. Alfred Publishing, 2006.

[2] Rich Hickey. A history of clojure. Proceedings of the ACM on Programming Languages,
4(HOPL):1–46, 6 2020.

[3] John H. Holland. Adaptation in Natural and Artificial Systems. The MIT Press, 1992.

[4] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley Longman Publishing Co., Inc., USA, 1st edition, 1989.

[5] Kostas Georgiadis. EvolTrio. https://github.com/kongeor/EvolTrio/, 2010. [Online; accessed
26-March-2023].

[6] Sean Moriarity. Genetic Algorithms in Elixir. The Pragmatic Programmers, 2021.

[7] Nicolas Carter. Music theory. Createspace Independent Publishing Platform, North Charleston, SC,
March 2018.

[8] Kostas Georgiadis. Music theory resources. https://blog.cons.gr/posts/

2023-03-14-music-theory-resources/, 2023. [Online; accessed 14-March-2023].

[9] Eduardo ReckMiranda and JohnAl Biles, editors. Evolutionary ComputerMusic. Springer London,
2007.

[10] Kowalczuk. Evolutionary music composition system with statistically modeled criteria, 2017.

[11] Joseph Alexander. The complete jazz guitar soloing compilation. www.fundamental-changes.com,
November 2015.

[12] David Hamburger. Take 5: Jazz Blues Soloing - Introduction. https://truefire.com/

jazz-blues-guitar-lessons/take-5-soloing/take-5-jazz-blues-soloing-introduction/

v44771, 2023. [Online; accessed 25-April-2023].

[13] Chien-Hung Liu and Chuan-Kang Ting. Evolutionary composition using music theory and charts.
pages 63–70, Singapore, 2013. IEEE.

[14] Alfonso Guarino, Delfina Malandrino, Luca Peppe, Michele Spina, Rocco Zaccagnino, and Nicola
Lettieri. A social platform designed for music: Learning and making compositions through collab-
oration. pages 1004–1009, Shanghai, China, 2019. IEEE.

55

https://github.com/kongeor/EvolTrio/
https://blog.cons.gr/posts/2023-03-14-music-theory-resources/
https://blog.cons.gr/posts/2023-03-14-music-theory-resources/
https://truefire.com/jazz-blues-guitar-lessons/take-5-soloing/take-5-jazz-blues-soloing-introduction/v44771
https://truefire.com/jazz-blues-guitar-lessons/take-5-soloing/take-5-jazz-blues-soloing-introduction/v44771
https://truefire.com/jazz-blues-guitar-lessons/take-5-soloing/take-5-jazz-blues-soloing-introduction/v44771

Appendix Α: Useful SQL queries

select count(*), r.value from ratings r

join users u on r.user_id = u.id

where u.id not in (1,2,4,6,7)

group by r.value

order by r.value

Listing 40: User rating distribution SQL

select g.bucket, count(*) as count from

(select i.num, e.total_iterations, ((i.num::float / e.total_iterations) * 10)::int as bucket

from ratings r

join iterations i on i.id = r.iteration_id

join evolutions e on i.evolution_id = e.id) g

group by g.bucket

order by g.bucket

Listing 41: User rating aggregration per evolution progress SQL

select g.bucket, count(*) as count from

(select i.num, e.total_iterations,

((i.num::float / e.total_iterations) * 100)::int as bucket

from ratings r

join iterations i on i.id = r.iteration_id

join evolutions e on i.evolution_id = e.id) g

where g.bucket <= 10

group by g.bucket

order by g.bucket

Listing 42: User rating at first 10% of the process SQL

56

	Preface
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Code
	List of Tables
	Introduction
	Web Development
	Clojure
	Language characteristics
	Language Primer
	REPL-driven development
	Benefits

	Design decisions and considerations
	Initial thoughts and prototyping
	Music representation
	Database
	Application modularization

	Application Architecture
	Model-View-Controller (MVC)
	Entity-relationship model
	Styling and interactivity
	User Actions and Management

	GDPR
	Security and Privacy
	Firewall
	Captcha

	Error tracking and performance
	Development and Deployment
	Development
	Deployment

	Libraries and tools
	Integrant
	Honeysql
	Malli

	Infrastructure
	Nginx and HTTPs
	Databases

	License

	Evolutionary Music
	Evolutionary algorithms
	EvolTrio
	Chickn
	Music
	Music theory basics
	ABC notation
	Chord construction
	Chord construction process

	Chromosome structure
	Genetic operators
	Helpers
	Crossover
	Mutation

	Fixing broken chromosomes
	Fitness Function
	Analyzing chromosomes
	Scale score
	Measure's last note score
	Note/Chord score
	Adjusting fitness score

	Tackling bias

	Feedback and Results
	Announcement
	Feedback
	User Interface
	Music
	Standalone
	Configuration

	Results

	Discussion and Future Work
	Discussion
	Evolutionary Algorithms
	Fitness
	Presets
	ABC and browser interactivity

	Challenges
	Complex configuration
	Time consuming
	Keeping users engaged
	What should an AI music community look like
	Supporting a software project

	Future Work
	EA settings
	Fixing broken chromosomes
	Fitness
	Music
	User experience and collaboration
	Infrastructure and monitoring
	Evolduo Live
	Different user needs
	Moving forward

	References
	Useful SQL queries

