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Περίληψη

Οι ενσωματωμένες συσκευές, όπως οι προγραμματιζόμενοι λογικοί ελεγκτές (PLC)
και συσκευές Internet-of Things (IoT), γίνονται στόχοι επιθέσεων κακόβουλου λογισμικού
με  αυξανόμενη  συχνότητα  και  καταστροφικά  αποτελέσματα.  Η  ανάλυση  φυσικού
πλευρικού  καναλιού  (SCA)  είναι  ένας  τρόπος  παρακολούθησης  της  συσκευής  χωρίς
πρόσβαση στο λογισμικό της, γεγονός που δεν προκαλεί επιβάρυνση πόρων στη συσκευή.
Στην  παρούσα  εργασία  παρουσιάσαμε  έναν  εναλλακτικό  τρόπο  χρήσης  ανάλυσης
πλευρικών καναλιών για την ανίχνευση ανωμαλιών σε ενσωματωμένες συσκευές κατά την
εκτέλεση κώδικα. Χρησιμοποιήσαμε σήματα πλευρικού καναλιού κατανάλωσης ισχύος για
να σχεδιάσουμε ένα σύστημα ανίχνευσης εισβολής βασισμένο σε συνελικτικά νευρωνικά
δίκτυα (CNN).  Χρησιμοποιήσαμε τον  κατάλληλο εξοπλισμό για  τη λήψη σημάτων που
αντιπροσωπεύουν  διαφορετικές  διαδρομές  του  κώδικα  εκτέλεσης.  Λαμβάνοντας  υπόψη
αυτά  τα  μονοπάτια  ως  κλάσεις  τροφοδοτήσαμε  ένα  συνελικτικό  νευρωνικό  δίκτυο  που
δημιουργήσαμε για να το εκπαιδεύσουμε για να προβλέψουμε πότε υπάρχει μια διείσδυση
που οδηγεί σε μια ανωμαλία στην εκτέλεση κώδικα. Υπάρχει μια δημοσιευμένη σχετική
εργασία  σχετικά  με  την  ανίχνευση  εισβολών  που  βασίζεται  στην  ανάλυση  καναλιού
πλευράς EM. Στην παρούσα διπλωματική εργασία εστιάζουμε στα σήματα καναλιού ισχύος.

Λέξεις Κλειδιά: PLC, IoT, CNN, SCA, ανάλυση σήματος μέσω φυσικού καναλιού
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Abstract
Embedded devices,  such as  programmable  logic  controllers  (PLC)  and Internet-of

Things (IoT) devices are becoming targets of malware attacks with increasing frequency and
catastrophic results. Physical side channel analysis is one way to monitor the device without
accessing its software, thus causing no resource overhead to the device. In this thesis we
presented  an  alternative  way  of  using  side  channel  analysis  for  detecting  anomalies  in
embedded devices during code execution. We used power consumption side channel signals
to design an intrusion detection system based on convolutional neural networks. We used
the proper equipment to capture signals representing different paths of the execution code.
Considering these paths as classes we fed a convolutional neural network we created in
order  to  train  it  to  predict  when  there  is  an  intrusion  leading  to  an  code  execution
abnormality. There is a previously published relative work on intrusion detection based on
EM side channel analysis. In this thesis we focus on power side channel signals.

Keywords:  Side  channel  analysis,  Power consumption signals,  Code  execution  monitoring,

Machine learning, Deep learning, Convolutional neural networks, PLC, IoT
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1 Introduction

1.1 Code execution monitoring using side channel 

analysis 

Programmable  logic  controllers  (PLC)  are  embedded  devices,  used  widely  in  industrial

control systems (ICS), which connect and monitor critical infrastructure such as electricity

grids,  health-care,  chemical  production,  oil  and gas  refinery [1].  Internet  of  Things (IoT)

embedded devices can be found in various home appliance applications, including illumina-

tion control, entrance control and surveillance. The requirements for these devices in power

consumption are really low and along with their small sizes and low cost make their on-chip

processing capability limited. 

Due to their popularity, PLC and IoT embedded devices are becoming targets for malicious

attacks, leading to private information leakage [2], or even catastrophic system failures [3],

[4].  A famous example of a malicious attack on a PLC is the Stuxnet malware, which, in

2010, by affecting the PLCs code damaged 20% of Iranian PLC-controlled centrifuges [5].

Other  PLC attacks  include Duqu [6]  and  Harvey [7].  Over  the  last  few years,  malware-

infected IoT devices have been increasingly used for launching Distributed Denial of Service

(DDoS)  attacks,  often  without  their  owners  knowing  that  their  devices  have  been

compromised. Recently, malicious actors have used botnets comprised of malware-infected

IoT devices, such as Internet-connected appliances and home routers, to great effect. These

devices are attractive targets for malware due to their lack of cryptographic encryption and



weak  default  authentication.  Among  attacks  that  have  exploited  IoT devices  is  a  botnet

malware family named Mirai, which brought the largest DDoS attack to date [8]. The botnets

in these attacks primarily consisted of home devices such as home routers, web-cams, and

printers [9], [10].

There has been an increasing body of work on embedded system security. Offline formal

control logic analysis has been investigated in [11] through symbolic execution and model

checking mechanisms. Solutions such as WeaselBoard [12] and CPAC [13] perform run-time

PLC  execution  monitoring  using  control  logic-  and  firmware-level  reference  monitor

implementations. A summary of threats to IoT devices can be found in [8]. 

Although one could add an extra piece of code to monitor program execution of embedded

devices and detect malicious attacks, such solution would impose on the device’s limited I/O

interfaces and constrained resources. Also, the required updates would introduce safety and

cost  concerns  [14],  [1].  Physical  side  channel  signals  have  been  investigated  as  a  more

desirable alternative. In [14] power consumption signals, collected during normal operation of

a  micro-controller  were used to  build a  control  flow model  based on the hidden Markov

model  (HMM). The model  was then used to track run-time code execution. In [15] local

spectra  of  electromagnetic  (EM)  emanations  of  an  ARM  processor  were  used  to  detect

deviations  in  program  executions.  EM  emanations  were  also  used  in  [1]  for  execution

monitoring  and  intrusion  detection  in  PLCs  [1].  In  particular,  in  [1],  a  long  short-term

memory (LSTM) neural network was trained to profile the legitimate execution status and

detect anomalies when a mismatch between the EM signal and the model is encountered.

Physical side channel has also been exploited in other security context due to its non-intrusive

nature:  attackers  can  eavesdrop  the  target  without  accessing  its  software,  defenders  can

protect the target from a totally external system which does not cause any resource overhead.

The  works  of  [16],  [17]  use  side  channel  leakage  signals  to  extract  the  secret  key  of

cryptographic  implementations.  There  is  also  work  about  program  activity  (e.g.  loops)

profiling [18], which falls under the context of software testing.

1.2 Thesis topic 

In this thesis, we demonstrate the use of power side channel signals for execution monitoring

and intrusion detection on embedded devices using convolutional neural networks (CNN).

CNNs are chosen here due to their ease of use in practice. CNN models better utilize the

computing power of GPU [19], which significantly speeds up the training process. Moreover,

due to  the  attention they have received from researchers  and engineers,  there  is  a  lot  of

literature  on  architecture  construction  and  tuning  of  parameters  (e.g.  initialization  [20],

architecture [21], [22], [23] and tuning [24]). Our system defends against control flow attacks,



launched by an adversary who uploads code to alter the control flow (execution pointer) of

the  program.  Examples  of  such  attacks  include  buffer  overflow  [25]  and  firmware

modification [26], which inject malicious code into the software, and return oriented [27] and

jump oriented programming [28], which use the software’s own code in a different (designed)

order for malicious purpose.

Our  execution  monitoring  and intrusion  detection  system consists  of  two stages,  namely,

profiling and deployment. During the profiling stage, source code of the target program is

analyzed to identify feasible paths and generate the program input, refered to as test cases,

that will lead to those paths. The program is then exercised with these test cases while the

corresponding power side channel  signals are captured.  These power side channel  signals

have unique signal patterns that represents the corresponding execution paths. The captured

signals are reshaped into 2D matrices according to a predefined window length. These 2D

matrices, referred to as power images contain discriminative visual features (e.g. edges, lines

and shapes etc.) that are formed by the fluctuations in the power side channel signals. Our

system uses these power images to construct a CNN classification model for profiling the

legitimate execution status of the target program. For the deployment stage, run-time power

side channel signals are captured and used to query the profiling model. This step determines

whether the run-time execution path is legitimate, or it represents malicious code execution.

1.2.1 Contribution

The thesis contribution is summarized as follows 

1. We captured power consumption signals from an embedded device (PLC) 

2. We constructed 41 classes  according to the execution paths and the power  signal

traces

3. We implemented a convolutional neural network based on existing ones to fulfill our

purpose.

4. We conducted tests on unseen data

5. We were able to detect the intrusion

6. We discussed the challenges and future work

1.3 Thesis structure

In section 2 related studies to our work are presented. We tried to keep the number of these

references limited as the literature has a lot of papers related on code execution monitoring

using side channels. We focused on their approach and the nature of their challenges they had

to deal with and overcome. 



In section 3 a background overview is presented. Tools we used are analyzed in this section

trying to provide details and references to the literature. A thorough review is done on the

neural networks and the deep learning.

In section 4 the implementation of our model is presented.

In section 5 we evaluate our results.



2 Related Studies  

The intrusion in embedded devices, like PLCs, is feasible by exploiting side channel signals

and leakage leading to extracting sensitive data. This process is called side-channel analysis

(SCA) and is really popular to cybersecurity. Power consumption, electomagnetic emanation

(EM), timing information and sound can be exploited and used in a malicious way. In the

research  scientific  community  an  important  and  significant  number  of  studies  has  been

conducted  through  the  last  15-20  years.  In  their  majority  these  studies  are  focused  on

crytpanalisis and cryptanalitic attacks in order to recover any secret related to their private

keys, using template attacks, conventional machine learning and deep learning networks [16]

[29][30][31].

Detecting the intrusion is more challenging, as a consistent monitoring is needed. Signals are

sensitive to noise and their monitoring is really hard to be implemented successfully. Using

different  techniques,  research  proved  that  this  field  seems  to   be  promising  resulting  in

positive  outcomes.  Hidden markov models  (HMM) were till  recently the  most  promising

providing accurate results tracking code execution in normal and abnormal execution tracking

[14][32]. Machine learning at the same time with its traditional algorithms (SVM) can be a

really powerful tool [33]. Things changed with the rise of neural networks and especially deep

learing  networks  giving  the  opportunity  to  the  researcher  to  cover  new  fertile  ground.

Important studies had already been started a while ago [34] setting the neural networks to

driving position in the research field. Its successors, deep learning networks are under the

microscope last years and they have already started proving their leading position in intrusion

detection [1][35]. 



It is mandatory to go through some of this important work and try to focus on the key points

and concepts, as the implementation of our model, from profiling till the actual deep network ,

was based on these studies. The major purpose though driving this thesis’ study was more

intuitive and based on novelty approach. The literature lacks of monitoring CNN models in

code execution.      

2.1 Execution monitoring using HMM

The most popular techniques to monitor code execution in embedded devices is the use of

HMM. Based on this method intrusion detection systems can be created based on execution

traces. These models require a really long training time because of the traces’ size. 

HMM  is  actually  based  on  Markov  Chain.  The  latter  one  is  a  model  which  gives  us

information and values regarding the probabilities of states,  sequences of variables. A given

set of values is the set that these states are taking values from. So the Markov Chain says that

the prediction of the next state of the sequence is depended on the current state. States that are

coming before the current one don’t have any impact on the future state, only via the current

state [36]. In figure 3 the transitions between the states are assigned to a value indicating the

probability for this transition to happen. 

Figure 1. Markon Chain

A Markov  Chain  consists  of  N states,  a  transiiton  probability  matrix  A and  an  initial

probability over states π. The sum of probabilities leaving a state are equal to 1. 

A HMM comes to cover the case of states, observations that we currently can’t see directly.

These  states  are  called  hidden.  Given  the  above  a  HMM has  in  addition  a  sequence  of

observations Ο and a sequence of observation likelihoods. The latter ones are called emission

probabilities.



1.1.1 Anomaly detection system based on HMM

There  are  four  basic  steps  they  need  to  be  considered  to  implement  a  HMM model  for

detecting abnormalities during the execution [32]. 

• Indicating the HMM system. In this stage the number of states must be declared. The

states are fully-connected, meaning that transitions are from any state can go to any

state. The probabilities are randomly initialized and the Baurn-Welch (BW) algorithm

is used for the training with four steps. Iterations have to be several and the training

stops when the likelihood of the model producing a second set of normal traces does

not improve. 

• Using Viterbi algorithm the normal state transition sequence is obtained, in order to

finde  the  sequence that  mazimize the corresponding transition probability.  Viterbi

algorith has 4 steps to successfully obtain this sequence. 

• Using Viterbi algorithm to obtain the test state transition sequence.

• The normal and the test state transition sequence are fed to the detection module. 

1.1.2 Program execution monitoring systems

In [14] power consumption signals are being captured, measured and analyzed in order to

track code execution of a micro-controller. To protect data processed by micro controller the

system has to defend senarios like:

• key extraction attack. This can be happened by recovering the instruction flow during

execution.

• Control flow graph (CFG) can be hijacked and malicious functions are implemented,

such as code injection attack and firmware modification attack

Power  side  channel  reflects  the  power  consumption  of  the  micro-controller  during  code

execution because different set instruction can create different power traces. Power traces are

leaking information about the instruction being executed without modifying the software or

hardware.

This  approach is  absolutely challening as  the  noise  can affect  those traces.  This  noise  is

created  by  other  parts  of  the  embedded device,  making difficult  the  extraction  of  useful

information. Researchers found that the accuracy is affected significantly, as at some cases

they achieved 60% accuracy.

Considering the above, researchers tried to overcome two major problems by answering two

major questions. 

• Which instruction instance in code is being executed at a given momentum



• Wheter the actual execution flow include abnormal execution deviating from the CFG

The first one is a result of a normal execution tracking while the second one a result of an

abnormal execution tracking. Using HMM answers can be given to both queries. For a given

power trace a recover of the most probable instruction sequence is feasible and at the same

time by checking the likelihood of the reported instructions in the reported sequence can

indicate an abnormal activity. 

Signal acquisition was obtained using an STC89C52 micro-controller with a clock rate of 11

Mhz and a sampling rate of 1.25 GHz (more than 100 times of the clock rate) to ensure good

performance. However, higher sampling rate means higher computation burden and latency.

The signal is segmented according to the clock cycle, so that each segment represents one

instruction. When determining the window length, there is a trade off between temporal and

frequency resolution. Extracting useful features from signal segment is done by eliminating

all the factors besides the intruction type from the power side channel. 

The  proposed  HMM  model  is  customized  by  the  CFG  of  the  program.  The  transitions

between the instruction blocks in the CFG are represented as state transitions in the HMM,

while emission probabilities as signal templates. The signal segments that correspond to each

instruction type are fitted to a Gaussian model. 

2.2 Execution monitoring using RNN

In [1] Zeus is presented, a contactless embedded controller security monitoring model. As in

[14] control flow intergity is monitored during the PLC program execution by leveraging the

electromagnetic emission of PLC circuit. 

During the PLC code execution there is a change on the electric current in the PLC circuitry.

This causes to electromagnetic signals which are captured with an antenna. Zeus is using this

to capture leakage information related to the program executed on the device.  These EM

signal traces have unique local characteristics, depending each time on the control flow.  

Because of its contactless nature, the system suffers from signal noise which can lead to bad

results.  Signal to Noise ratio is too low and the researcher dealt with that inspired by the

speech recognition research. They are looking at frequency representation of signal segments

within a local sliding window. Those segments are extracted and a power spectral desnity is

computed based on their consecutive instructions. 

The  collected  signal  traces  are  used  to  train  the  classifier  and  Zues,  during  the  runtime,

collects the emanations and classify them. This results in a probability distribution computed

by the model over all the classes. 



The classifier is constructed based on a LSTM network. LSTM is a RNN and is covered in the

next section. 

In [1],  since the input sequences corresponded to all possible execution paths of the target

program, program control flow is implicitly embedded in the profiling model. This is different

from  [14]  where  CFG  is  explicitly  used  when  constructing  the  profiling  model.  During

deployment,  query  signals  are  matched  with  the  program  control  flow,  so  that  their

corresponding execution paths can be predicted. 

Both RNN and HMM capture signal transitions in a kind of memory. HMM models signal

segments as a state machine, therefore the transition matrix which describes the probabilities

of transitions between signal segments is their memory. HMM has a 1st-order dependency

assumption, i.e.,  the transition matrix modeling is only between two adjacent input signal

segments.  However,  capturing long-term dependency is  essential  in execution monitoring,

since branch conditions (e.g. variables be checked in an IF statement) could be correlated to

lines of code far away. RNN solves the long-term dependency problem by relaxing the first

order  dependency  assumption.  Instead  of  computing  a  transition  probability  matrix

connecting adjacent input signal segments, RNN carries useful information through a hidden

state vector. The hidden state vector can hold longer dependencies in the input signal segment

sequence. For RNN the hidden state vector can be viewed as the internal ’memory’, i.e. when

processing  each  input  signal  segment,  RNN refers  to  the  hidden  state  vector  for  useful

information  of  past  signal  segments.  However,  RNN suffers  from the  vanishing  gradient

problem, making it  hard to train. LSTM and the gated recurrent unit  (GRU) mitigate this

problem by replacing the traditional linear transform & nonlinear activation combination with

a set of switch gates, which helps the model deliberately ’forget’ useless information and thus

remember longer. Moreover, when the size of the target program gets large (i.e. large number

of execution paths), more computing power and more memory are needed to construct and

deploy the model. This is because a large neural network (large number of weights) is needed

to hold all the paths. In some resource limited application scenarios this might be infeasible  



3 Theoretical 

Background  

Physical side channel signals, as power consumption, can reflect the execution of a set of

particular instructions inside the processor of an embedded PLC, thus can be leveraged for

monitoring program execution.  Program analysis  can be used in  addition to  side channel

signal  analysis to  enable  finer  granularity of  execution monitoring [1],  [14],  [15].  In  this

section we provide some background on how physical side channel signals are correlated with

program  execution,  and  also  introduce  basic  concepts  and  useful  techniques  in  program

analysis.  Basic  and  mandatory  concepts  of  machine  learning  field  are  introduced.  An

overview of neural networks and convolutional neural networks is presented as well, tools

which are used in order to classify and, eventually, detect any possible intrusion.

3.1 Power side channel signals

Electronic devices consist of circuits with a large number of CMOS components. Turning on

and off  these components  leads  to  varying currents  and voltages.  The latter  ones  can be

captured  and measures  without  interacting  with  the  device.  Power  consumption  provides

useful  information for  the  corresponding device.  Voltage  fluctuations  can be  captured  by

measuring the voltage at the VCC pins of a digital chip. 

In PLCs, as in every other electronic device, code execution causes the components to turn on

and off giving rise to the voltage and the power consumption. Several factors affect the shape

of  side  channel  signals,  namely,  the  type  of  instructions  executed,  the  operands  of  each

instruction, the order of executed instructions, and also interference from other components of

the device and ambient  noise.  The effects  of  these factors  can be understood as  follows.



Execution of different instructions utilizes processor resources in different ways, and different

operands  imply  different  data  transmitted  and  processed.  Therefore,  both  of  the

aforementioned factors gives rise to unique signal patterns. Processors use a pipeline mode

[38], via which the next instruction is fetched during the execution of the current instruction.

The effect  of  this  pipeline mechanism can be seen in Figure 2a,  where each clock cycle

contains  two peaks,  corresponding  to  the  “fetch”  and “execute”  instructions  of  the  AVR

ATmega328p  micro-controller.  The  pipeline  mechanism  causes  the  signal  pattern  of  the

currently  executed  instruction  to  interfere  with  that  of  the  next  instruction.  Finally,

environmental noise, such as noise from the external power supply, or from unpredictable

program events (e.g., cache misses, interrupts) and interference from electronic components

in the circuits also contribute to the signal pattern. Power signals tend to have very small

variability between the different runs, with the minor differences caused by noise.

3.2 Program analysis

In  order  to  accurately  track  program  execution  through  a  side  channel  signal,  some

information about the program structure is required. Such information can be obtained by

analyzing the target program via a “static approach”, or a “dynamic approach”. Static analysis

extracts the information by directly inspecting the code. Via static analysis, a control flow

graph (CFG) can be derived. Source code may be available for some devices. The binary code

of  certain IoT devices  firmware can be downloaded from the product  website.  If  neither

source nor binary code are available, it might be possible for certain embedded devices to

extract the binary code through a JTAG connection [39]. JTAG is a hardware interface found

on most embedded devices, which allows users to debug or download the program from the

device. CFG is a directed graph, where each node, referred to as basic block, represents a

code snippet  between two consecutive conditional  statements.  Basic blocks are connected

according to the logic in the conditional statements at their end, e.g., continue execution, or

jump back to  the  beginning  of  a  WHILE loop.  Figure  5  shows a  piece  of  code  and its

corresponding CFG. Depending on the variables associated with those conditional statements,

the program will  go through different  paths.  The term path condition refers  to  the  set  of

conditions that lead the program execution to a particular path. Identification of all feasible

execution paths of a program is achieved via “dynamic analysis,” e.g. symbolic execution and

the  Satisfiability  Modulo  Theory  (SMT)  solver  [40].  Symbolic  execution  is  a  means  of

analyzing a program to determine what inputs cause each path to be executed. Inputs are

replaced with symbolic values and the program is executed. The conditions of the conditional

statements  for  each  possible  outcome during  execution  are  aggregated.  In  this  way,  path

conditions for all execution paths are obtained together with the program outputs in terms of



the  input  symbols  and  variables  in  the  program.  The  SMT solver  takes  as  input  a  path

condition and returns a set of test cases for that path. These test cases are used as inputs to the

target program, e.g., traffic packet data sent to a network router.

3.3 Machine learning

Machine Learning classifiers can also be used to classify side channel signals as “normal” or

“abnormal”.  The  advantage  of  such  models  is  that  they  can  improve  their  performance

through training without requiring the understanding of the physical model that relates the

side signals with the underlying instruction code execution. For these reasons, various ML

models have found applications in side channel analysis, including Support Vector Machines

(SVM), Random Forests (RF), and Self Organizing Maps (SOM) [41], [42].

More  recently,  Artificial  Neural  Networks  attracted  significant  attention  for  side  channel

analysis thanks mostly to their considerable success in many other fields. There are generally

two types of neural network models: stateless and stateful. Stateless models, have no memory,

ie. the current output y(t) depends only on the current input x(t). A typical stateless Neural

Network is the Multi-layer Perceptron. The use of MLP’s for side channel analysis has been

proposed by various authors, for example, [43].

In a stateful model, on the other hand, the output depends on the recent history of the input

patterns for a time-window of length T. Depending on the value of T, we say that the model

has short- or long-term memory. Recurrent Neural Networks (RNN) are stateful models with

infinite memory implementing a nonlinear IIR system, through an output-to-input feedback

loop.

Unfolding an RNN in time we realize it looks like a feed-forward model with infinite depth.

Cleverly designed recurrent units can be trained efficiently, by allowing the propagation of the

gradients very deep into the architecture. The Long-Short-Term-Memory (LSTM) unit [44] is

such an example which has gained immense popularity due to its successful application in

many sequence classification tasks. The state, s(t), of the LSTM unit is a dynamic variable

which is fed-back on to itself with a gain factor γ. With γ = 1 the unit can back-propagate the

gradients without decay for any number of time instances bypassing the vanishing gradients

problem. Moreover, the unit contains two gates: the in-gate in, which controls how much of

the input affects the state and the out-gate g out, which controls what percentage of the state

goes to the output. Since the in- and out-gates are trained, the model can adaptively determine

the length of its own memory by opening the gates for a sufficient number of time instances.

Another alternative recurrent unit proposed recently is the Gated Recurrent Unit (GRU) [45]

which  is  quite  similar  to  the  LSTM  unit  but  simpler.  In  some  examples,  the  GRU has

demonstrated improved performance, especially in smaller datasets.



Currently there is no mature and systematic rules to determining the hyper-parameters of an

deep neural  network,  i.e.  the number  of  layers,  the  number of neurons at  each layer  etc.

Researchers  usually  empirically  derive  a  hyper-parameter  set  based  on  trails  and  errors.

Fortunately  there  is  an  emerging  research  trend on  automatically  determining  the  hyper-

parameters of a deep neural network [46], [47].

An RNN, in general, can be used to capture relationships among data samples in a sequence.

It  is flexible enough to find relationships even if the samples are further away from each

other. The execution of a program can naturally be represented by a sequence of states along

the  execution,  e.g.  instructions  executed,  functions  called,  or  most  related  to  this  paper,

physical side channel signals emitted. Dependencies in the program control flow (e.g. the

conditions of an IF...ELSE... statement might be correlated with several lines of code before)

are reflected in the sequence of execution states. These dependencies are essential for tracking

which section of the code are executed. Therefore, RNN is very a suitable tool for modeling

program execution. Although RNNs have not demonstrated the best possible performance in

the context of side channel attacks [48] as we will see, they are very suitable for anomaly

detection.

1.1.3 Machine learning training

There are three ways the machine learning uses to train models [49]. 

Supervised learning  is when during the learning process there are labels present on data,

both input and the desired output. Training data for supervised learning consist of pairs of

input and  output data described using predictive variables or features, and the target variable.

It is used in problems such as 

• Classification

• Regression

• Interpretation

Unsupervised learning is when there are no labels present. It is the process of uncovering

patterns and structures from unlabeled data. It is usually met on grouping data (clustering) and

associate analysis.

Reinforcement learning is based on software agents interacting with an environment. These

agents are able to automatically figure out how to optimize their behavior, given a system of

rewards  and  punishments.  Reinforcement  Learning  draws  inspiration  from  behavioral

psychology, and has applications in many fields, such as economics, genetics, as well as game

playing.



In our case supervised learning is used as the problem we are trying to solve is categorized as

classification

1.1.4 Classification

Classification is  the  method or  process  which classifies  a  given set  of  data  to  a  specific

number of classes [50].  Classes can be 2 or more and their  values are not  numerical  but

categorical.  That  means the values could be more than a  simple “Yes” or “No” like,  for

example, in the case of an ISP categorizing emails as spams or no spams. Classes are called

sometimes as targets, labels or categories. 

Classification’s prediction model is based on supervised learning and it is the function that

maps the input variables X to discrete output variables Y. Data are fed to the machine learning

classifier and a prediction is made from the latter one. Data can be an image, some text from

an email etc. These data are fed into a machine learning classifier. In machine learning there is

a table of data from which to learn. Along with these data there are the target data, the correct

answers  as  well.  The  classifier  learns  to  make  correct  predictions  by  providing  lots  of

examples of inputs and their target labels in to some algorithm which learns to identify this

pattern. There are two classification problems. Binary and multi-class classification. 

The case of the binary classification lies in the process in which given a set of standards Xi =

{x1, x2, ..., xv} and a set of two classes C = {C0, C1}, it must be determined in which of the

two classes belongs to each of the X models. The above procedure is based on the finding of a

target  function  f,  which  represents  each  set  of  values  of  an  object  X in  one  of  the  two

predetermined classes, so that it is possible the classification of future inputs.

For example, spam detection in email service providers can be identified as a classification

problem. This is s binary classification since there are only 2 classes as spam and not spam. A

classifier utilizes some training data to understand how given input variables relate to the

class. In this case, known spam and non-spam emails have to be used as the training data.

When the classifier is trained accurately, it can be used to detect an unknown email.

y=f (x ; w) (1)

There are actual three stages in the classification process. The training process, the validation

(or testing) of the predictive model and the application to new incoming data. In the first

stage, supervised learning is applied with the training data and the corresponding labels being

entered. Training data are analyzed, discovering this way the relationships that link each class

to the corresponding inputs. This process shows the corresponding classification model for

the training data. 



In the second stage the classification model is tested using the test data as input, specifying

the class to which each input belongs. Comparing the predicted class with the actual class to

which it belongs it calculates the accuracy of the model’s performance. 

The third stage is the actual application of the model to new data, not seen during the training

or testing process. The goal of the classifier is to have the ability to generalize.  

Mutliclass classification on the other hand is when there are mutliple classes instead of two.

Each  training  data  belongs  to  one  of  N  different  classes.  The  goal  remains  the  same,

constructing a classification model which, given new (unseen) data, will correctly predict the

class to which one of these data point belongs. 

1.1.5 Artificial Neural Networks (ANNs)

Neural networks or, as they are mostly known, artificial neural networks, are communication

and information processing systems, inspired by the structure and functionality of the human

brain and more precisely by its biological neurons [50].

The most usual Artificial Neural Networks use simple neural models, thus keeping the basics

characteristics of biological neurons. Yet even these models can create interesting networks if

they meet two basic characteristics [51]

• Neurons have adjustable parameters

• The network are successfully processing and distributing information through a large

density of neurons

Neurons are the basic processing element of one ANN. They often appear in the bibliography

as nodes (nodes). The stimuli that the neuron receives from its entrances (dendrites), is the

information  that  is  transported  to  its  outputs  (synapses),  penetrating  its  axon,  to  another

neuron.  The synaptic  link and how strong it  is,  is  determined by a  numeric  value called

weight. So when this value it's taken under consideration, while information is transferring to

the neuron’s entrances, and the sum of these entrances exceeds a threshold, then the axon

fires, meaning it transfers the information. Otherwise the neuron is inactive.

1.1.5.1 Artificial Neural Networks history

In 1943, Warren McCulloch, a neurophysiologist, and a young mathematician, Walter Pitts,

wrote a paper [52] on how neurons might work. They implemented a highly simplified model

of a neuron trying to understand how the brain could produce complex patterns by using

many cells that are connected togerther.

In 1949, Donald Hebb, a psychologist, tried to understand how the function of neurons were

contributing to processes of psychological nature, such as learning. In his book [52] “The



Organization of Behavior”, he pointed out that neural pathways are strengthened each time

they are used.

In  1955,  Nathanial  Rochester  from  the  IBM  research  laboratories  led  the  first  effort  to

simulate a neural network.

In 1956 the Dartmouth Summer Research Project on Artificial Intelligence [53] provided a

boost  to  both  artificial  intelligence  and  neural  networks.  Considerable  theoretical  and

experimental work had been done and this stimulated research in AI and in the much lower

level neural processing part of the brain.

In 1958, Frank Rosenblatt, a neuro-biologist of Cornell, began work on the Perceptron [54].

The Perceptron, which resulted from this research, was in fact a major improvement over the

MCP model (McCulloch and Pitts). It was built in hardware and is the oldest neural network

still  in  use  today.  This  invention  granted  him  international  recognition.  A single-layer

perceptron was found to be useful in classifying a continuous-valued set of inputs into one of

two classes.  The perceptron,  using supervised learning,  was able to figure out the correct

weights by itself directly from the training data. It computes a weighted sum of the inputs,

subtracts a threshold, and passes one of two possible values out as the result.

In 1959, Bernard Widrow and Marcian Hoff of Stanford implemented the models ADALINE

and MADALINE. These models were named for their  use of Multiple ADAptive LINear

Elements. MADALINE was actually a multi-ADALINE model. MADALINE was the first

neural network to be applied to a real-world problem. It is an adaptive filter which eliminates

echoes on phone lines. This neural network is still in commercial use.

Until 1981 there were no progress on neural network research as funding was stopped due to a

big wave of criticism towards the scientific teams and their results.

In  1997  a  recurrent  neural  network  framework,  Long  Short-Term Memory  (LSTM)  was

proposed by Schmidhuber & Hochreiter [44].

In 1998, Yann LeCun published Gradient-Based Learning Applied to Document Recognition

[55].

There was a small reference in the introduction of what exactly is ANN. Below there is a

more detailed description and the best way for a fully understanding of the components and

how neural networks work is to go through the simplest model there ever was, the perceptron.

1.1.5.2 Perceptron

Perceptron is a single layer neural network [56]. As mentioned previously, perceptron was

introduced in 1958 and it was based on the MCP model. It is actually consisted of one neuron



and it is the still used today as well (Figure 2). Given the fact that this neuron is simulating the

biological neuron function it is better to explain what the components are in comparison. 

Figure 2. Perceptron

In biological neurons dendrites are receiving electric signals from other neurons through the

latter ones’ synapses. Synapses are modulating these signals in various amounts. In perceptron

these signals are numerical values, inputs X and the corresponding synapses are the weights

W. The biological neuron action is modeled by multiplying each input by the corresponding

weight. 

w i×x i (2)

The biological neuron fires only when the total amount of the input signals exceeds a certain

threshold (θ). In perceptron this action is modeled by calculating the weighted sum of the

inputs

u=∑
i=1

n

wi× xi (3)

The  biological  neuron the  feeds  its  output  to  the  next  neuron.  Applying  a  step  function

(activation function) in the perceptron the neuron can determine its output which is fed to

other  perceptrons.  The  activation  function  in  a  non linear  function  and  especially  in  the

Perceptron it can be:

f (u)={0,if u>0
1, if u≤0

(4)

or 



f (u)={ 1, if u>0
−1, if u≤0

(5)

Perceptron is used for binary classification (figure 3) and is been trained using supervised

learning. The problem with the perceptron is that it can’t be used to solve problems which

don’t have a linear solution. Because of that Multi-layer perceptron was introduced, to solve

non linear problems. 

Figure 3. Linear Binary Classifier

1.1.5.3 Multi-layer Perceptron (MLP)

The restriction imposed by the use of Perceptron is that it can represent only two dimensions

due to the single neuron it has (figure 4). If another neuron is added then the representation of

more than two dimensions is possible. It is possible to implement functions that do not can be

implemented through a simple Perceptron network. Networks that are made up of various

perceptrons are called Multi-Layer Perceptron [57]. The main feature of these networks is that

the neurons of any layer are fed exclusively from the neurons of the previous layers and at the

same time feed exclusively the neurons of the next layer.



Figure 4. Inability of perceptron to solve problems like XOR

MLP is the fundamental principle of neural networks and mostly of Deep Learning. A MLP is

a deep, artificial neural network and they are composed of an input layer for receiving the

signal, an output layer for making the decisions or predictions and a number of hidden layers

between them. These hidden layers are the heart of MLP and deep learning itself. 

 Figure 5. Multi-layer Perceptron

MLP is a feed forward network, which means that the input data move towards the output

through the hidden layer(s) and there are no loops or so ever. The training of this model is

based on the backpropagation algorithm with weights correctness and error minimizing. 



1.1.5.4 Activation functions

Activation  functions  are  really  important  component  of  the  ANNs  as  they  are  actually

mapping the output to a given input. They are, usually, non-linear functions and they convert

the input signal of a neuron to an output signal which will feed the following neurons. 

The essence of the activation functions’ nature must be non-linear in order for the ANN to

learn more complicated things. A linear equation is much easier to be solved but they are

limited in applied to really simple models as linear regression and classification models. The

world  is  built  on  complicated  concepts  and  is  nature  is  non-linear.  ANNs must  learn  to

compute and represent data as images, audio etc where their architecture is not simple. These

networks have to become more powerful by adding the ability of learning something complex

and more complicated. Thus non-linear activation functions are able to generate non-linear

mappings from inputs to outputs.

Finally  non-linear  activation  functions  are  differentiable,  something  that  is  mandatory  to

perform training algorithms such as back-propagation optimization algorithms.

Some of the most popular and used activation functions are:

• Sigmoid or Logistic

f (x)=
1

1+e−x (6)

Sigmoid function is a non-linear continuously differentiable function and that exactly is its

biggest advantage against linear function. The range is from 0-1 and that is a disadvantage as

it is not symmetric around the origin. Besides that the gradients can be really small after a

certain point. 

• ReLU

f (x)=max(0, x) (7)



ReLU function is the most popular and most widely used activation function today. It is not

linear function, which means it can be easily differentiated. One of ReLU’s disadvantages is

that the negative side of the graph results in gradients equal to zero, meaning that the weights

are not updated during the back-propagation.  

• Leaky ReLU

f (u)={ax, if x<0
x ,if x≥0

(8)

Leaky ReLU function is an improved version of the ReLU function. It can actually delivers

successfully the solution to the gradient equal to zero issue of the ReLU for x < 0, which

makes the neuron’s activation zero. 

• Softmax



σ (z )j=
ez j

∑
k=1

K

e
z k

for j=1, …, K
 (9)

Softmax function is a type of sigmoid function but is really useful when it comes to handle

multiple classes. It is squeezing the outputs for each class to a value between 0 and 1 and also

dividing them by the sum of the outputs. Essentially this gives the probability of each input

belonging to a specific class. 

1.1.5.5 Back-propagation 

In the Back-Propagation algorithm the learning process is supervised, thus we have the input

vector, output vector and targets (x, y, d) and the corresponding training data sets in pairs. 

x(k)
=[

x1
(k)

...
xm
(k)] input vector x (10)

y(k )
=[

y1
(k)

...
yn

(k)] output vector y (11)

d (k )
=[

d1
(k)

...
dn

(k)] target vector d (12)

A neural network captures its learning ability and its knowledge on the weights. Weights can

successfully transform the signal to a really good decision or the opposite, depending on the

training process. As already mentioned, neural networks are feed-forward networks and once

the  prediction  is  made  the  output  data  distance  from  the  target  or  ground  truth  can  be

measured. This is the error of the particular model. A really popular cost function which is

being used often is the mean square error

E=
1
K
∑
k=1

K

‖d(k)− y(k)‖2 (13)

The algorithm uses the cost criterion (function) to minimize the error based on the model

outputs and the desired values of the targets [58]. The optimization method used by the back-

propagation algorithm is the gradient descent method which finds the minimum of the cost

function. 

There is an obvious separation of the training process in two major steps, forward and back-

propagation. 

During the forward-propagation: 



• an input vector x is fed to the network and its input neurons. The weights (including

biases) are given by the vector w 

• an output vector y is produced 

• weights don’t change at all at this stage

During the back-propagation:

• the error is calculated based on the output and the target (equation 15)

• using gradient descent the error is fed back to the network backwards. 

The total error E is affected by the weights as the input doesn’t change. Increasing or

decreasing the weights the value of the total error becomes smaller or bigger. The

desirable value of the error has to be close to zero, the minimum. Considering a graph

of the cost function the global loss minimum is the value we are looking for.

Figure 5. Gradient descent

This can be written by its mathematical form, the partial derivative of E with respect

to the wij. 

∂E
∂w ij

(14)

Applying the chain rule  it  is  possible  to  calculate  all  the  partial  derivatives  with

respect to each weight. This is done by the optimization functions. 

• weights adjust their values. The update on each weight is being calculated in a reverse

way, from the output towards the input and there is a learning rate a which is a really

small positive number.

W ij
(t+1)

=W ij
(t)
−a

∂E
∂w ij

(15)



The  whole  training  process  using  the  back-propagation  algorithm  is  really  easy  to  be

implemented and there are few parameters need to be adjusted. It might be slow and it can be

terminated when:

• the cost for one cycle (age) of the algorithm is smaller than a specified threshold

• the error in two consecutive epochs is not diminished significantly

• the difference between two consecutive updated weight values are significant small

1.1.5.6 Loss function

Loss  function  is  the  function  that  evaluates  the  output,  the  solution  of  an  optimization

algorithm. Depending on the solution it might be searching the best possible output that has

the highest or the lower score. It is an indicator of how well the predictive model performs

and  it helps adjusting the weights towards the best possible solution.  

In neural networks the loss function has an important job to do. It has to calculate the error of

the model during the optimization process and that might be a really challenging task, as it

must captures the properties of the corresponding problem [59]. The choice of a loss function

is not as simple as it seems but there are some ways to point the right one with respect to the

particular  problem or  model  is  being  constructed.  It  is  much more preferable  the  use  of

function where the solutions are on a smooth landscape allowing the optimizer to navigate

through in a better-smoothy way. 

Especially in the case of classification a really popular and most common loss function is the

cross entropy loss. 

1.1.5.7 Optimization methods

Optimization methods are used for finding the minimum of a function. In the case of the

neural networks this function is the loss function and it helps in updating the weights through

back-propagation. Most of the optimization methods Deep learning is using come from the

Stochastic Gradient Descent (SGD). 

The problem with SGD is that it updates a parameter for each training example. That can be a

good thing, as it helps to discover more, and possibly better, local minima, because of the

frequent fluctuations with high diversion. However, at the same time, the procedure becomes

more complicated and once the convergence to the minimum is done it will keep going on. To

overcome this issue many other alternative methods were created based on SGD. Some of the

most used ones are

• Gradient descent with momentum 

• AdaGrad



• Adadelta

• Adam

• AdaMax

1.1.6 Deep learning

Deep learning is a neural network with many layers (hidden layers). Its concept is based on

multi layers of single neural networks. Visible layers are only the input and the output [59].

Traditional machine learning works well on datasets which are consisted of a few hundred

features. An unstructured dataset however, like the ones from images, has a really big number

of features making the process challenging and completely unfeasible. Deep learning models

are using their many layers to find the best possible way to learn from raw data and extract

useful features. They learn progressively as data goes through each neural network layer. In

the image example, as data goes through the first  layers, model is learning how to detect

features like edges and is moving even deeper to the next layers transferring these features.

Those layers help as well to extract other features, adding more details. The higher layers

build higher levels of abstraction based on things that the lower layers are learning. That way

the model could be able to distinguish objects and parts in the image like a face, an arm, a car

or a tree. It   allows the computer to learn complicated concepts by building them out of

simpler ones. 

The  concept  of  Deep  learning  is  not  something  new.  As  mentioned  previously  neural

networks’ history starts way back in the 50’s and 60’s. However, only in 00’s there was a

scientific explosion with researches related to deep networks. There is a reason for that and

that would be the enormous amount of data and the incredible computational power of today’s

systems along with the appearance of multi-cores GPUs. 

Back  in  the  days  when  Deep  learning  concept  was  introduced,  there  were  no  enough

resources to provide the necessary and, at the same time, large number of data to train such

models. Gathering data was an exhaustive and, totally, not pleasant job at all. Besides that

those models demand a huge computational power, making the deep learning models not a

good fit for the standards of that time. 

Today, in the time of Big Data, the sources deep learning models use can provide data more

than enough to help them in the training process and of course to evaluate the final outcome.

Deep learning requires large amounts of labeled data. It requires also computational power

that didn’t exist till  recently. GPU-accelerated frameworks are used to train deep learning

networks more flexible and provide speed and accuracy at the same time. GPUs can have a



parallel architecture which is efficient for deep learning models. Training process duration can

be reduced from days and weeks to hours or even less.  

Figure 6. Deep learning network

There are several deep learning architectures in the scientific community, others are used in

commercial applications and others are still in the research stage, providing some promising

results though.

1.1.6.1 Deep Belief Networks

Deep  Belief  Networks  (DBNs)  are  based  on  Restricted  Boltzmann  Machines.  To  fully

understand the architecture of DBNs an introduction of RBMs is mandatory. 

An RBM is a shallow two layer net, the first layer is known as the visible layer and the second

is called an hidden layer. Each node in the visible layer is connected to every node in the

hidden layer and RBM is considered restricted because no two nodes in the same layer share a

connection.  RBM, in  the  forward pass  takes  the  inputs  and  translates  them into  a  set  of

numbers that encode the inputs and in the backward pass it takes this set of numbers and

translates them back to form the initial inputs. RBM was introduced to replace the traditional

way the  neural  networks were trained,  the  back-propagation algorithm and the  vanishing

gradient problem [60].



Figure 7. Restricted Boltzmann Machine

An interesting aspect of an RBM is that the data does not need to be labeled. This turns out to

be very important for real world data sets like photos, videos, voices and sensor data, all of

which tend to be unlabeled.

A well trained RBM will be able to perform the backwards translation with a high degree of

accuracy. In both steps, the weights and biases have a very important role. They allow the

RBM to correlate and, at the same time, find relationship patterns among the input features.

This way they help RBM to decide which features are the most important when detecting

patterns [61]. 

After  several  forward and backward passes RBM is trained to reconstruct  the input  data.

Three steps are repeated over and over through the training process. With a forward pass,

every input  is  combined with an individual  weight  and one overall  bias and the result  is

passed to the hidden layer, which may or may not activate. Next, in a backward pass, each

activation is combined with an individual weight and an overall bias and the result is passed

to the visible layer for reconstruction. At the visible layer, the reconstruction is compared

against the original input to determine the quality of the result. 



Figure 8. Restricted Boltzmann Machines - Reconstruction

Rather than having people manually label the data and introduce errors, RBM automatically

sorts through the data. By properly adjusting the weights and biases RBM is able to extract

the important features and reconstruct the input. An important note is that an RBM is actually

making decisions about which input features are important and how they should be combined

to form patterns. 

RBM is part of a family of feature extractor neural nets, which are all designed to recognize

inherent patterns in data. These nets are also called autoencoders because in a way, they have

to encode their own structure.

An  RBM can extract  features  and reconstruct  inputs.  By combining  RBMs together  and

introducing a clever training method, a powerful new model can be obtained, the Deep Belief

Network (DBN). Just like the RBM, deep belief nets were also conceived by Geoff Hinton as

an alternative to back propagation. 

In terms of network structure, a DBN is identical to an MLP but when it comes to training,

they are entirely different. In fact, the difference in training methods is the key factor that

enables DBNs to outperform their shallow counterparts. A deep belief network can be viewed

as a stack of RBMs, where the hidden layer of one RBM is the visible layer of the one above

it [62]. 

A DBN is trained as follows. The first RBM is trained to reconstruct its input as accurately as

possible. The hidden layer of the first RBM is treated as the visible layer for the second and

the second RBM is trained using the outputs from the first RMB. This process is repeated

until every layer in the network is trained. A DBN works globally by fine tuning the entire

input in succession as the model slowly improves. Kind of like a camera lens slowly focusing

a picture. The reason that a DBN works so well is highly technical, but it would suffice to say

that a stack of RBMs will outperform a single unit, just like a multi layer perceptron was able

to outperform a single perceptron working alone. After this initial training, the RBMs have



created a model that can detect inherent patterns in the data. To finish training, a process of

introducing labels to the patterns is needed and fine tune the net using supervised learning. To

do this, a very small set of labeled samples is needed so that the features and patterns can be

associated  with a  name.  The weights  and biases  are  altered slightly,  resulting  in  a  small

change in the perception of the patterns and often a small  increase in the total  accuracy.

Fortunately,  the  set  of  label  data  can be small  relative  to  the  original  data  set,  which  is

extremely helpful in real world applications. 

1.1.6.2

Recurrent Neural Networks (RNNs) are really useful for processing sequential data such as

time series, sound or text processing. This deep learning model has a simple structure with a

built in feedback loop, allowing it to act as a forecasting engine. In a feed forward neural

network signals flowing only one direction from input  to output  one layer at  a time in a

recurrent that the output of a layer is added to the next input and fed back into the same layer,

which is typically the only layer in the entire network. At t=1, the net takes the output of time

t=0, and sends it back into the net along with the next input. The net repeats this for t=2, t=3,

and so on. Unlike feedforward, recurrent nets can receive a sequence of values as input, and it

can also produce a sequence of values as output. The ability to operate with sequences opens

up these nets to a wide variety of applications, for example, when the input is singular, and

the output is a sequence the potential application is image captioning. A sequence of inputs

with a single output can be used for document classification. When both the input and output

are sequences, these nodes can classify videos frame by frame. As seen previously with other

deep learning models, by stacking RNNs on top of each other, you can form a net capable of

more complex output than a single RNN working alone. 

Figure 9. RNN

An RNN is an extremely difficult net to train. Since these nets use back propagation, the

problem  of  the  vanishing  gradient  is  present.  Unfortunately,  the  vanishing  gradient  is



exponentially  worse  for  an  RNN.  The  reason  for  this  is  that  each  time  the  step  is  the

equivalent of an entire layer in a feedforward network. So training an RNN for 100 time steps

is like treating a 100-layer feedforward net. This leads to exponentially small gradients and

decay of information through time. 

There are several ways to address this problem, the most popular which is gating. Gating is a

technique that helps the net decide when to forget the current input and when to remember it

for future time steps. The most popular gating types today are GRU and LSTM. When it

comes to training a recurrent net GPUs are an obvious choice over an ordinary CPU. GPUs

are able to train RNNs 250 times faster.

1.1.6.2.1 Long Short-Term Memory (LSTM)

In  RNN there  is  an  obvious  flaw  caused  by  the  vanishing  gradient  problem.  It  doesn’t

contribute  to  learning  too  much.  The  earlier  layers  usually  don’t  learn  at  all.  They  are

suffering from sort memory. This is exactly the reason that LSTM networks were created, as a

solution to the sort memory problem [44]. 

LSTM’s most known feature is the gates. These are internal mechanisms which are used to

regulate the flow of data. These gates can learn in time which data in a sequence is important

to  keep  and which  are  not.  By doing  that  it  learns  to  use  relevant  information  to  make

predictions. LSTMs can be found in speech recognition, in synthesis softwares speech to text

etc. 

RNN works pretty good for a short sequences of data. The computational cost is significant

smaller, having just a few operations to go through, internally. LSTM is pretty much similar

to RNN. Data flow is close to the latter’s one. The differences are located internally in the

cells operations. They are using the gating technique. 

LSTMs fundamental unit is the memory block, located in the recurrent hidden layer. They are

formed by the memory cells and the gates. Cells are connecting to gates with the latter ones

being responsible to control the data flow. These gates are the input, output and forget [63].

All three gates contain sigmoid functions for squishing the values between 0 and 1. Some of

them contain tanh to help regulate the network. Information is  coming through the input gate

which decides how important this information is. Value closer to zero means not important.

Information coming through the forget gate gives an output within this time range. Values that

are closer to 0 indicate that the corresponding information has to be thrown away, has to be

forgotten. Values closer to 1 are kept and passed through the next layer. Cell state is updating

to new values relevant to the network and the output gate decides what the next hidden state

is. 



Figure 10. LSTM

3.4 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are deep neural networks and their main use is on

image processing. They primarily are used for image classification in the field of computer

vision [64][65]. They are the most popular deep networks since 2012 when they were first

used on a challenging and well known competition, the ImageNet. The winner, a CNN model

(AlexNet) succeed into an unexpected 15% classification error,  dropping the record by 11

units  (26%  was  till  that  time)  [66].  Scientific  community  welcomed  this  astounding

improvement and after that there was an explosion in research papers, trying to imitate and

improve CNN models based on the first successor. All the next competitions had remarkable

models improving even more the classification error, setting the CNN a mandatory network

when it comes to image classification. 

CNNs  are  used  in  several  other  occasions,  besides  the  traditional  image  classification.

Companies  are  using  these  networks  for  photo  searching,  grouping  them  by  similarity

(clustering). Google does that and the results are impressive. Along with photo clustering they

are incredible reliable to perform object and face recognition. Facebook is using CNNs in

their tagging algorithms.  Amazon,  Instagram, Pinterest are some other companies that are

using CNNs for their services. 

CNNs are making the assumption that data has the form of images. The input is images, a

bunch of pixels, numbers indicating the values referring to RGB. The output is nothing more

than numbers describing the probability of the image belonging to a specific class. Making

the forward function more efficient to implement, CNN architecture is reducing at the same

time the amount of parameters in the network. 



1.1.7 Architecture

Traditional neural networks can not scale well to full images. The amount of weights that

have to handle is, from a certain point and on, quite big. The huge number of parameters

would quickly lead the model to overfitting. CNN’s architecture can be more flexible and it

can be constrained in a more meaningful way. Its layers are consisted of neurons set in 3

dimensions, for example a colorful image which has width, height and depth. 

CNN’s architecture  is  a little  bit  different  than the traditional  neural  networks.  The basic

components are the Convolutional layer, the activation function (non-linear), the pooling layer

(downsampling) and the Fully-connected layer [55]. The common components with respect to

neural network are the activation function and the Fully-connected layer. Their functionality

is exactly the same on both networks. The input on a CNN model is actual an array of pixel

values, representing an image. The dimensions of the array as mentioned before is, mostly,

3D. The output can be a single class (or a probability of classes) describing the image in the

best possible way. It is easy and correct to say that the CNN architecture mainly is consisted

of two parts. The first part, the convolutional, is responsible for extracting features and the

second part is the classifier, the Fully-connected layer. 

Figure 11. CNN high layer architecture

1.1.7.1 Convolution layer

It is always the first layer in a CNN model. The parameters of a Conv layer are actually part

of a group of filters. Filters which are learnng while they are scanning the image. Each filter

convolves  across  the  width  and  height  of  the  input  volume,  computing  element  wise

multiplications between the pixel values of the image and the values in the filter. Convolution

is  coming  from  the  signal  processing  field  and  is  a  mathematical  way  to  express  the

combination  of  two  signals  to  a  third  one.  Mathematically  during  the  convolution  the

multiplications are all summed up and the output is a single number. 

Filters have the same depth with the input so if, for example, the input has size 32x32x3 then

filters might be 5x5x3. The numbers forming the filters are called weights or parameters.

Depth in this case is the number 3 and the area of the image through which filters are passing



is called receptive field. As the filter keeps sliding over the image more single numbers are

produced. These numbers are moved each time to a two dimension array, the activation or

feature map. Each filter produces one activation map and the activation maps from the input

layer, stacked together, are becoming the input to the second Conv layer. 

Figure 12. Convolution layer

The  intelligent  nature  of  CNNs  is  hidden  in  these  layers.  Filters  are  providing  useful

information (features) regarding the image and its context. Starting from the first Conv layer

the features being extracted are low level features. They might be edges, lines, or curves etc.

Each filter is totally different so the extracted feature are a bunch of different lines, curves.

Going through the next Conv layers the features become more complex, high level features. 

When  it  comes  to  CNNs  the  calculations  in  Conv  layers  demand  the  basic  arithmetic

knowledge to be known. Besides that there are some parameters to set and other layers to go

through before the output of the previous Conv layer becomes the input to the next Conv

layer. These are the activation function (usually ReLU) and the pooling layer.

There are three hyperparameters being used in CNNs in order to maintain the spatial nature of

the initial input. The size of the output volume is based on these parameters and is a key point

in the training process:

• Depth,  is  the  number  of  the  filters  being applied to  the  input.  It  is  not  a steady

number and can be changed on each Conv layer. 

• Stride which is going to be used for sliding the filter, for example, if stride is 1 then

the filter is being moving one pixet at a time.

• Zero-padding, is the number which indicates the size of padding the input volume

with zeros around the border. Zero-padding maintains the spatial size of the original

volume and controls it. 



Let’s assume we have images of size 32x32x3 and we want to use 4 filters of 5x5x3 size with

stride 1 and no padding. 

Assuming that W is the width, H is the height and D the dimension then we will have the

following values:

W1 = 32, H1 = 32 and D1 = 3

F is the spatial size of the filters and K is their actual number

F = 5, K = 4, S = 1, P = 0

The output is going to be a volume of size W2 x H2 x D2        

W 2=
(W 1−F+2 P)

S
+1 (16)

H 2=
(H 1−F+2 P)

S
+1 (17)

D2=K (18)

W2 = 28, H2 = 28 and D2 = 4

The pooling layer is responsible for downsampling, reducing the spatial size of the volume.

The reason is to reduce the amount of parameters and computation in the network, so the

network doesn’t overfit. The pooling layer has filters as well and based on the size of these

filters  along  with  type  of  pooling,  the  downsampling  changes  the  output  size  without

changing the data representing the initial  pixels.  Calculating the hyperparameters the only

difference with the filters’ applications is that there is no padding and D2 =  D1

1.1.7.2 Fully Connected layer

The convolutional layers helps the model to extract meaningful features from the initial input

(images). The final output (in the Convolution part) is a set of features (weights) that need to

be classified in order to provide any information that indicates the relation of the output to the

ground output. The output of all neurons are joined and flattened to a vector of N dimesnion,

where N is the number of the classes we want to classify the original input. The difference

between the fully connected layer and the convolution layer is that the latter one can share

parameters through its neurons, not connecting all the activations of each layer to the next

one’s.  On the other  site,  fully connected layers  have connections  to all  activations  in  the

previous layer. Each number in this vector represents the probability of a specific class (out of

the N classes). 



1.1.7.3 Overfitting in CNN

Overfitting and undefitting are presents in CNN as well. However, there are introduced some

methods which are not applied to traditional machine learning alrgorithms. It is well known

that a model is overfitting when its training procedure makes it fitting too well to the training

set.  Generalization in this case is difficult  to established,  as the model  learn to recognise

specific images instead of patterns. 

There are some steps to avoid overfitting and amongst those the most popular and recent one

is the dropout method [67]. This method, during the training process, sets activations to zero,

in a random way. In the prediction process this method does not apply but a reduce to the

activations number is taking place. This way dropout can make a network to learn more useful

features. Along with dropout method data augmentation can contribute in reducing overfitting

as well. Similar to dropout data augmentation happens only in training set and it includes

images coming from the original rotating it, adding color filter etc.



4 Power Side Channel 

Execution Monitoring using CNN

Studying the related work and analyzing the advantages and disadvantages of several models,

it is obvious the need of a much better model overall. Here we demonstrate the use of power

side channel signals for execution monitoring and intrusion detection using CNNs. Based on

the literature the steps following this section would be the profiling model construction and

the execution monitoring intrusion detection. 

4.1 Profiling Model Construction

1.1.8 Program Analysis

The flow of a program execution is controlled by conditional statements, such as IF THEN,

WHILE  and  FOR  loops.  Depending  on  the  variables  associated  with  those  conditional

statements the program will go through different execution paths. The term path condition

refers  to  the  set  of  conditions  that  lead  the  program execution  of  a  particular  path.  For

profiling,  we  need  to  identify  all  feasible  paths.  This  is  achieved  by  applying  symbolic

execution  and  the  satisfiability  modulo  theory  (SMT)  solver  [40]  on  the  source  code.

Symbolic execution is a means of analyzing a program to determine what inputs cause each

path of a program to be executed. It replaces concrete inputs with symbolic values and then

executes the program. The conditions of the conditional statements are aggregated for each

possible outcome during execution. Therefore, path conditions for all execution paths can be

achieved together with the program outputs in terms of the input symbols and variables in the



program. The SMT solver takes as input a path condition and outputs a set of concrete value

sets. These value sets are called test cases for that path and are used as inputs to the program.

Program analysis was performed using the symbolic testing tool KLEE. For our preliminary

results, the micro-controller was running a Dijkstra shortest path algorithm im- plementation.

We collected 41 execution paths and generated 100 test cases for each path. We transferred

the  test  cases  onto  the  Arduino,  through  the  serial  communication  interface  of  Arduino

(controlled by its MATLAB API). 

1.1.9 Signal acquisition

For power signals, the quality depends on the voltage regulator. The voltage fluctuation with

respect  to  the ground (GND) at  the VCC pin can be measured by an oscilloscope probe

connecting to  an  oscilloscope.  Resistors  and  capasitors  can be added between the  power

supply and the VCC pin of the processor in order to get more stabilized measuremens. This is

called a differential measurement. This has the advantage of masking unpredictated events

such  as  random pertubations.  However,  when  the  target  device  and  the  oscilloscope  are

plugged in the same outlet, can damage the oscilloscope in some cases. To avoid somethiing

like that it might not power the target device from the outlet, but instead use the USB port of a

battery powered laptop, or simply use battery. One can also measure the voltage fluctuation

on each end of the resistor separately, and do the differentiation in the oscilloscope if a multi-

channel oscilloscope is available. Finally, a differential probe will also solve the problem  

The corresponding signal was captured on the oscilloscope using the oscilloscope’s MATLAB

API  through  the  Ethernet  connection  from  a  computing  station.  One  power  signal  was

captured  for  each  test  case.  Captured  signals  were  also  transferred  through  the  Ethernet

connection to the computing station for future processing. Power signals were reshaped with a

window size of 500.



function dataCollection1(num_tc, num_tr, data_folder, testcases)
% test using random testcases

% connect to Arduino serial port
arduino = serial('/dev/ttyACM0', 'BaudRate', 9600);

% connect to oscilloscope
if 1
    % Create a TCPIP object.
    interfaceObj = instrfind('Type', 'tcpip', 'RemoteHost', '192.168.137.1', 'RemotePort', 1861, 
'Tag', '');

    % Create the TCPIP object if it does not exist
    % otherwise use the object that was found.
    if isempty(interfaceObj)
        interfaceObj = tcpip('192.168.137.1', 1861);
    else
        fclose(interfaceObj);
        interfaceObj = interfaceObj(1);
    end

    % Create a device object. 
    deviceObj = icdevice('lecroy_basic_driver.mdd', interfaceObj);
    set(interfaceObj, 'InputBufferSize', 2000000);

    % Connect device object to hardware.
    connect(deviceObj);
    
    % Get utility device for sending commands
    util = get(deviceObj, 'Util');
end

% test case generation
% load(fullfile('data', testcases_file), 'testcases')

function dataCollection1(num_tc, num_tr, data_folder, testcases)
% test using random testcases

% connect to Arduino serial port
arduino = serial('/dev/ttyACM0', 'BaudRate', 9600);

% connect to oscilloscope
if 1
    % Create a TCPIP object.
    interfaceObj = instrfind('Type', 'tcpip', 'RemoteHost', '192.168.137.1', 'RemotePort', 1861, 
'Tag', '');

    % Create the TCPIP object if it does not exist
    % otherwise use the object that was found.
    if isempty(interfaceObj)
        interfaceObj = tcpip('192.168.137.1', 1861);
    else
        fclose(interfaceObj);
        interfaceObj = interfaceObj(1);
    end

    % Create a device object. 
    deviceObj = icdevice('lecroy_basic_driver.mdd', interfaceObj);
    set(interfaceObj, 'InputBufferSize', 2000000);

    % Connect device object to hardware.
    connect(deviceObj);
    
    % Get utility device for sending commands
    util = get(deviceObj, 'Util');
end

% test case generation
% load(fullfile('data', testcases_file), 'testcases')



if 1
    tc = randperm(length(testcases));
end

tested_cases = tc(1:num_tc);

if ~exist(fullfile('data', data_folder), 'dir') 
    mkdir(fullfile('data', data_folder))
end
    
save(fullfile('data', 'tested', data_folder), 'tested_cases')

% data collection
fprintf('testcases:'), display(tested_cases)
if 1
    for i = 1:num_tc
        % keep the serial port open will cause strange pattern in the power trace
        fopen(arduino);
        pause(3);
        fprintf(arduino, '%s', testcases(tested_cases(i)));
        pause(5)
        fclose(arduino);
        pause(1);
        % send testcase
        disp(['collecting #', num2str(i),  ' test case, #', num2str(tc(i))])
        
%         checkCurrentDir(util)
%         % create data folder
%         CMD = ['DIR DISK,HDD,ACTION,CREATE,', num2str(i)];
%         invoke(util, 'sendcommand', CMD);
%         % switch to data folder
%         CMD = ['DIR DISK,HDD,ACTION,SWITCH,', num2str(i)];
%         invoke(util, 'sendcommand', CMD);
%         dd = checkCurrentDir(util)
%         while ~isequal(dd(21), '\')
%             dd = checkCurrentDir(util)
%         end
       % data collection
        CMD = 'STST C1,HDD,MATLAB';
        invoke(util, 'sendcommand', CMD);
        for num_traces = 1:num_tr
            disp(['-----collecting #', num2str(num_traces), ' sample...'])
            invoke(util, 'sendcommand', 'STO');
            pause(2)
        end
        % trigger collection
        CMD = 'STST C2,HDD,MATLAB';
        invoke(util, 'sendcommand', CMD);
        invoke(util, 'sendcommand', 'STO');
        pause(5);

if 1
    tc = randperm(length(testcases));
end

tested_cases = tc(1:num_tc);

if ~exist(fullfile('data', data_folder), 'dir') 
    mkdir(fullfile('data', data_folder))
end
    
save(fullfile('data', 'tested', data_folder), 'tested_cases')

% data collection
fprintf('testcases:'), display(tested_cases)
if 1
    for i = 1:num_tc
        % keep the serial port open will cause strange pattern in the power trace
        fopen(arduino);
        pause(3);
        fprintf(arduino, '%s', testcases(tested_cases(i)));
        pause(5)
        fclose(arduino);
        pause(1);
        % send testcase
        disp(['collecting #', num2str(i),  ' test case, #', num2str(tc(i))])
        
%         checkCurrentDir(util)
%         % create data folder
%         CMD = ['DIR DISK,HDD,ACTION,CREATE,', num2str(i)];
%         invoke(util, 'sendcommand', CMD);
%         % switch to data folder
%         CMD = ['DIR DISK,HDD,ACTION,SWITCH,', num2str(i)];
%         invoke(util, 'sendcommand', CMD);
%         dd = checkCurrentDir(util)
%         while ~isequal(dd(21), '\')
%             dd = checkCurrentDir(util)
%         end
       % data collection
        CMD = 'STST C1,HDD,MATLAB';
        invoke(util, 'sendcommand', CMD);
        for num_traces = 1:num_tr
            disp(['-----collecting #', num2str(num_traces), ' sample...'])
            invoke(util, 'sendcommand', 'STO');
            pause(2)
        end
        % trigger collection
        CMD = 'STST C2,HDD,MATLAB';
        invoke(util, 'sendcommand', CMD);
        invoke(util, 'sendcommand', 'STO');
        pause(5);



1.1.10 Signal  and data Pre-processing

Power side channel signals are reshaped into 2D matrices by splitting each signal according to

a window length and stacking these signal segments together. Power side channel signals have

several components that contribute to its discriminative signal pattern, e.g.,  a fundamental

periodic signal component that corresponds to the processor’s clock rate; modulation signal

components that correspond to the loops in the program structure; signal peaks of various

amplitude that correspond to different instructions as well as different orders of instructions

along the execution; large spikes due to I/O read and write. By reorganizing the signal points

into a 2D matrix, these components form fundamental image elements such as edges, lines

and shapes that will be utilized by our CNN model to recognize signals of different execution

paths.

Figure 12. Power Image

%         % switch directory back
%         invoke(util, 'sendcommand', 'DIR DISK,HDD,ACTION,SWITCH,..');
%         checkCurrentDir(util)        
    end
end

movefile('/mnt/osc/testing/*', fullfile('data', data_folder));

delete(deviceObj)
delete(interfaceObj)
delete(arduino)

%         % switch directory back
%         invoke(util, 'sendcommand', 'DIR DISK,HDD,ACTION,SWITCH,..');
%         checkCurrentDir(util)        
    end
end

movefile('/mnt/osc/testing/*', fullfile('data', data_folder));

delete(deviceObj)
delete(interfaceObj)
delete(arduino)



4.2 Execution Monitoring and Intrusion Detection

The execution profiling model is essentially a classification model, where execution paths are

treated as classes. Power signals generated by test cases that belong to one specific path are

members of that class. 

Figure 13. Two different classes – two paths

"""
rename subfolders and files
"""

import os

#data folder
folder_path = '../sig2img_new2'

#creating list with the folders/classes
folders_list = os.listdir(folder_path)                                  # ['class32', 'class15', 'class39', ....]

for folder_name in folders_list:
    folders_path = os.path.join(folder_path, folder_name)               # '../sig2img/class32'
    new_folder_name = 'class' + folder_name
    new_folder_path = os.path.join(folder_path, new_folder_name)
    os.rename(folders_path, new_folder_path)
    files_list = os.listdir(new_folder_path)                               # ['93.mat', '78.mat', 
'65.mat', .......]
    for each_file in files_list:
        files_path = os.path.join(new_folder_path, each_file)
        new_filename = new_folder_name + '_' + each_file
        new_filename_path = os.path.join(new_folder_path, new_filename)
        os.rename(files_path, new_filename_path)



"""
rename subfolders and files
"""

import os

#data folder
folder_path = '../sig2img_new2'

#creating list with the folders/classes
folders_list = os.listdir(folder_path)                                  # ['class32', 'class15', 'class39', ....]

for folder_name in folders_list:
    folders_path = os.path.join(folder_path, folder_name)               # '../sig2img/class32'
    new_folder_name = 'class' + folder_name
    new_folder_path = os.path.join(folder_path, new_folder_name)
    os.rename(folders_path, new_folder_path)
    files_list = os.listdir(new_folder_path)                               # ['93.mat', '78.mat', 
'65.mat', .......]
    for each_file in files_list:
        files_path = os.path.join(new_folder_path, each_file)
        new_filename = new_folder_name + '_' + each_file
        new_filename_path = os.path.join(new_folder_path, new_filename)
        os.rename(files_path, new_filename_path)

"""
seperates files into two folders with the same subfolders
"""

import os
import shutil
import random

folder_path = '../sig2img_new'
folders_list = os.listdir(folder_path)                                  # ['32', '15', '39', ....]
dest_folder_path = '../sig2img_new2'

for folder_name in folders_list:
    folders_path = os.path.join(folder_path, folder_name)               # '../sig2img/32'
    dest_folder_name = os.path.join(dest_folder_path, folder_name)      # '../sig2img2/32'
    if not os.path.exists(dest_folder_name):
        os.makedirs(dest_folder_name)
    files_list = os.listdir(folders_path)                               # ['93.mat', '78.mat', '65.mat', .......] 
100 in total
    random_list = random.sample(files_list, 50)                         # ['65.mat', '35.mat', ......] 50 
in total random
    for each_file in random_list:
        files_path = os.path.join(folders_path, each_file)              # '../sig2img/32/93.mat'
        dest_files_path = os.path.join(dest_folder_name, each_file)     # 
'../sig2img2/32/93.mat'
        shutil.move(files_path, dest_files_path)



We use CNN architectures to construct our classification model. For different execution paths,

various code portions are exercised. This produces unique local patterns in the power signals,

and therefore discriminative local features in the power images. Our model utilizes these local

features to distinguish among different execution paths and thus profiling the execution status.

During the training process, the most significant stage of the CNN model is the application of

filters to the input of each layer which allows the model to learn useful features and feed them

into the classifier. Filters vary in size depending on the features we want to extract [67]. Since

the features we want our model to extract are not distinct enough from each other, we apply

small size filters stacked in order to increase the depth of our network and allow it to learn

more complex features. The final output of our first set of layers before the fully connected

layer is a vector, holding a specific amount of features. The features are passed to a set of

fully  connected  layers  together  with  a  softmax  function  to  produce  class  scores.  This  is

essentially a softmax classifier and the output class scores are the probability mass function

(PMF) over all classes. The loss function used in our model is the cross-entropy loss. Using

back propagation, our model’s optimization algorithm adjusts the weights with respect to the

loss function. The trained model is used to monitor the execution. Power signals captured at

run-time are fed into the model.  Class labels are computed for each query signal as their

predicted execution path.



from __future__ import print_function
from scipy import io
import os
import numpy as np
import torch
import torch.utils.data as Data
import torch.nn as nn
from torch.autograd import Variable
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
#import scikitplot as skplt
import pandas as pd
import seaborn as sn
class CustomDataset(Data.Dataset):

    def __init__(self, dataset_dir):
        self.classes_path = dataset_dir                                      # initialize the path (dataset_dir) 
of our dataset directory
        self.classes_list = os.listdir(self.classes_path)                    # ['class32', 'class15', 
'class39', 'class4',.........]  total 41
        self.trace_list = []                                                 # ['class18_53.mat', class18_12.mat,....] 
 total 2050
        self.label_list = []                                                 # ['class18', 'class18',....]              total 
2050
        self.label_dict = {}                                                 # {0: 'class36', 1: 'class18', ....}       
total 41
        for i, each_class in enumerate(self.classes_list):
            self.label_dict[i] = each_class
            files_path = os.path.join(self.classes_path, each_class)
            files_list = os.listdir(files_path)
            self.trace_list += files_list
            for each_file in files_list:
                self.label_list.append(each_class)

    def __getitem__(self, item):
        label_path = os.path.join(self.classes_path, self.label_list[item])
        trace_path = os.path.join(label_path, self.trace_list[item])

        trace_array = (io.loadmat(trace_path))['img']
        trace = torch.from_numpy(np.expand_dims(trace_array, axis=0)).float()

        for key, values in self.label_dict.items():
            if values == self.label_list[item]:
                label_key = [key]
        label = torch.LongTensor(label_key)

        return trace, label

    def __len__(self):
        return len(self.trace_list)



train_data = '../sig2img_new'
train_dataset = CustomDataset(train_data)

test_data = '../sig2img_new2'
test_dataset = CustomDataset(test_data)

epoch_number = 20
batchSize = 32
learn_rate = 0.00003

train_loader = Data.DataLoader(train_dataset, batch_size = batchSize, shuffle= True)
test_loader = Data.DataLoader(test_dataset, batch_size = batchSize, shuffle= False)

class CNN_Model(nn.Module):
    def __init__(self):
        super(CNN_Model, self).__init__()
        self.features = nn.Sequential(
                nn.Conv2d(1, 32, kernel_size = 5, stride = 5),
                nn.ReLU(inplace = True),
                nn.Conv2d(32, 64, kernel_size = 4, stride = 2),
                nn.ReLU(inplace = True),
                nn.Conv2d(64, 128, kernel_size = 3, stride = 2),
                nn.ReLU(inplace = True),
                nn.Conv2d(128, 256, kernel_size = 3),
                nn.ReLU(inplace = True),
                nn.Conv2d(256, 256, kernel_size = 3),
                nn.ReLU(inplace = True),
                nn.MaxPool2d(kernel_size = 2, stride = 2)
                )
        self.classifier = nn.Sequential(
                #nn.Dropout(0.5),
                nn.Linear(256*10*10, 1024),
                nn.ReLU(inplace = True),
                #nn.Dropout(0.5),
                nn.Linear(1024, 512),
                nn.ReLU(inplace = True),
                nn.Linear(512, 41))
    def forward(self, x):
        x = self.features(x)
        x = x.view(-1, 256*10*10)
        x = self.classifier(x)
        return x

model = CNN_Model()
#model.load_state_dict(torch.load('../CNN_model'))
model.cuda()
print(model)

def train_model(train_loader):
    optimizer = torch.optim.Adam(model.parameters(), lr=learn_rate)
    criterion = nn.CrossEntropyLoss()
    total_loss = []



for epoch in range(epoch_number):
        instance_loss = 0.0
        for i, data in enumerate(train_loader, 0):
            inputs, labels = data
            inputs, labels = inputs.cuda(), labels.cuda()
            inputs, labels = Variable(inputs), Variable(labels)
            labels = labels.view(-1)
            optimizer.zero_grad()
            output = model(inputs)
            loss = criterion(output, labels)
            loss.backward()
            optimizer.step()
            instance_loss += loss.item()
            print('loss data', loss.item())
        print('instance', instance_loss)
        print('i', i + 1)
        print('Epoch: ', epoch, '| train loss: %.4f' % (instance_loss / (i + 1)))
        total_loss.append(instance_loss / (i+1))

    torch.save(model.state_dict(), '../CNN_model')

def test_model(test_loader):
    correct = 0
    total = 0
    y_pred = np.array([])
    y_true = np.array([])
    for data in test_loader:
        signals, labels = data
        signals, labels = signals.cuda(), labels.cuda()
        signals = Variable(signals)
        output = model(signals)
        labels = labels.view(-1)
        _, predicted = torch.max(output.data, 1)
        total += labels.size(0)
        y_pred = np.concatenate((y_pred, predicted.cpu().numpy()))
        y_true = np.concatenate((y_true, labels.cpu().numpy()))
        correct += (predicted == labels).sum()
    print(correct, total)
    print('Test Accuracy: %.2f' % (100 * float(correct) / float(total)))
    print('pred: ', y_pred)
    print('true: ', y_true)
    conf_matrix = confusion_matrix(y_true, y_pred)
    print(conf_matrix, conf_matrix.shape)
    for i in range(conf_matrix[0].size):
        for j in range(conf_matrix[1].size):
            conf_matrix[i, j] = (conf_matrix[i, j] / 50.0) * 100
    #skplt.metrics.plot_confusion_matrix(y_true, y_pred)
    cm = pd.DataFrame(conf_matrix, index=[i + 1 for i in range(41)], columns=[i + 1 for i in 
range(41)])
    plt.figure(figsize=(10, 7))
    sn.set(font_scale=1.7)
    sn.heatmap(cm, annot=False, annot_kws={"size": 16})
    plt.ylabel('True class')
    plt.xlabel('Predicted class')
    plt.show()



1.1.11 Intrusion Detection

A PMF is also computed for each query signal. Legitimate executions will have power signals

that match the model well, resulting in output PMFs that are significantly biased towards the

actual execution path. We take the maximum probability as the likelihood score forthat signal.

Anomalous  executions  deviate  from the  legitimate  state  (section  III),  causing  some local

patterns of the power signals to change, thus affecting the local features of the power images.

This makes the anomalous power images not good matches for the model, thus the likelihood

scores are smaller. By setting a threshold on the likelihood score, anomalous executions can

be identified.

We also tested our system regarding its anomaly detection accuracy. We generated three type

of anomalies: (i) Code replacement, which entirely replaces the legitimate code. In this case,

we replaced the Dijkstra code with a new program that manipulates the I/O interfaces; (ii)

Control flow deviation, which replaces the code from some point in the control flow. This is

to produce the effect of a buffer overflow attack where adversaries inject malicious shellcode

and direct the program execution pointer to it. Note that for control flow deviation attacks,

program execution will not return to normal state after the malicious code execution. Again

we injected shellcode that manipulates the I/O interfaces; (iii) Code injection, which injects

shellcode  to  the  code  but  does  not  terminate  the  legitimate  code  execution.  Sensor  data

logging is an example of such attack. We injected a piece of code that constantly saves sensor

data onto the SD card. These three types of anomalies represent three levels of changes on the

power  signals,  from total  replacement  to  only  small  changes.  The  detection  difficulty  is

supposed to increase when the amount of changes is smaller. We collected 100 signals for

each anomaly, accompanied by 100 legitimate signals. 



5   Evaluation

We  adopted  the  Alexnet  image  classification  model  as  our  execution  profiling  model.

Specifically,  we  changed the  input  and  output  dimensions  of  the  first  few convolutional

layers, since our input power images are of only one channel instead of three for natural

images. We adjusted the filter size of the first few convolutional layers to be smaller in order

to capture the fine-grained details in the power images. All pooling layers except the last one

are removed for the same purpose. The model architecture is shown in Figure 3. On each box,

we denote the type of layer. In case of Convolution layers (Conv), the filter’s size is shown,

followed by the stride (s5) and the filter’s number. In case of Fully connected layer (FC), the

number of neurons is shown. The activation function (ReLU) is applied after each of the two

above layers. In case of pooling layer (Max Pooling) the size of kernel and stride are given.

To evaluate the execution monitoring performance of our system we used 2050 power images

(50 for each execution path) as the training set and the same amount of data for testing. The

entire training set is passed to the model 20 times. The experiments along with the research

had been conducted at Rutgers University in New Jersey, in the Communications and Signal

Processing Laboratory (CSPL). Equipment for the aqcuisition and the measurement of the

power consumption signal was used frequently. 



Figure 16. Learning rate = 0.0003. Epochs 10 and 20



Figure 14. CNN proposed architecture

After  several  experiments  based  on  this  architecture  we  focused  on  tuning  the  hyper-

parameters of the CNN. This is something that is based on testing and evaluation, without

ensuring that  the  results  will  be  good.  The number  of  epochs,  the  size  of  the  batch,  the

optimizer along with the learing rate were tested with different values combined all together. 



Figure 15. Learning rate = 0.0001. Epochs 10, 15, 20

The suggested number of epochs was 20 and it was enough for this amount of data we had to

use for training. Learning rate was the main factor towards better results along with the batch

size. The latter one helped us understand how important is  during the training process to

choose a proper value for it. 



ROC curves  of  the  detection  results,  where  one  can  see  that  for  all  three  anomalies  the

detection performance is good. Also, it is interesting to see that although the code injection

only changes a very small portion of the power signal,  perfect detection is still  achieved.

However, control flow deviation, which changes larger portion of the code, achieves a worse

detection performance. This is because the decision boundaries of our model for different

classes is so nonlinear that a tiny perturbation could drift the power image away from its true

class thus result in a low likelihood score. Such phenomenon has been investigated in the

topic of adversarial machine learning. Corresponding to the worse performance of control

flow deviations, the likelihood scores indicate that signals are mispredicted as the 29th class

with high confidence. The reason is that these signals happen to resemble legitimate power

signals of that class.

Figure 17. Confusion matrix



6    Conclusions

In  this  thesis  we  presented  a  deep  learning  model  (CNN) based  on  which  a  high  score

classification on different code execution paths was delivered. PLCs and embedded devices in

industry are lack of a proper monitoring when it comes to security against malicious threats.

We saw how dangerous is to leave those devices unmonitored and what are the challenges to

implement and deploy a proper monitoring system. 

Using side channel analysis for monitoring it is more efficient in terms of cost and overhead

but at the same time the signals themselves are hard to be captured without ovecoming some

important issues like noise. Power consumption signals are promising in this field against

other side channel signals and more easy to be captured without a major interference. 

Creating a monitoring system using deep learning networks is becoming a reality as the last

years CNNs have become really popular. We proved that CNNs can behave as good as other

solutions. In fact in some cases they can perform even better. 

Of course there are challenges when it comes to implementing a new or tuning an existing

model. These limitations might be blocking more researchers to investigate time in this field. 

In the future a proper tutorial on using deep learning methods for side channel analysis can be

delivered and attract more scientits and researchers.  
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