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Abstract

Dynamic storage allocators are a critical component of database systems since they
largely affect their performance and safety. Persistent storage allocators used by
these systems are different from main memory allocators. Additional requirements
such as crash resilience, concurrency control and minimized disk accesses must be
satisfied. This creates a demand for efficient, fast and safe allocation of storage
space in such environments.

This thesis presents a theoretical design of a dynamic storage allocator for a new
concurrently readable memory mapped key value database system. We initially
introduce and analyze the internals of the database specifying the requirements of
the allocator. Then, we perform a literature survey on dynamic memory allocation
concepts, techniques and low-level mechanisms. Finally, we introduce our design
proposal. Both in-memory and on-disk structures are presented along with the
mechanisms that make the allocator fast, safe and resilient to system crashes.
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Chapter 1

Introduction

Dynamic storage allocation has been a fundamental part of computer systems
since the beginning of the computer era and a heavily researched topic in academic
groups. Many general purpose allocators have been developed over the years for
managing main memory such as those implementing the C malloc interface.

However, allocating persistent storage is different than allocating main memory,
and when specific requirements or limitations exist custom solutions have to be
developed. This thesis focuses on the design of a dynamic storage allocator for a
new key-value database. The state of such an allocator must be preserved across
different system sessions in contrast to RAM allocators.

This chapter introduces key-value databases, explains the need for efficient dy-
namic storage allocation, discusses some of the allocator requirements and defines
the objective of this thesis.

1.1 Overview of key value stores

Key-value stores are one of the simplest forms of database. They implement an
associative array by mapping keys to their corresponding values. Key-value stores
are the foundation of almost every complex database from set based, text storage
to relational database management systems.

The minimum interface that a key-value database has to provide to a consumer
is the following:

6



CHAPTER 1. INTRODUCTION

• get(key): For retrieving the data that has been previously stored under the
identifier “key”.

• set(key, value): For storing “value” in the database under the identifier
“key”.

• delete(key): For deleting the data that has been previously stored under
the identifier “key”.

Key-value databases are generally highly optimized for reading data. In con-
trast to the better known relational databases there is no concept of relationships
between data nor that of a database schema. Key-value databases fall in the cat-
egory of the NoSQL databases and the SQL query language cannot be used to
retrieve information from them.

Due to their simple nature, search filters cannot be applied to data sets. In case
the search key is not known, an iteration over all the keys stored in the database
is required which is a slow operation.

Key-value stores can be in memory only and used as non-persistent cache. How-
ever, when data persistency is required they need to store their data on disk. Some
popular key-value store implementations include LMDB, BerkeleyDB, LevelDB,
MemcacheDB and Redis.

1.2 Dynamic storage allocation

Dynamic storage allocation refers to manual management of persistent storage
space or main memory. The purpose of a dynamic storage allocator is to provide
storage space dynamically to an application at run time whenever the application
requests it. When the program is done using that storage space it must inform
the allocator which then has to return that space to its free space pool and mark
it as available for future reuse.

A great deal of research on the topic exist and many allocator implementations
have been developed over the years. A paper from Wilson, Johnstone, Neely and
Boles contain an extensive review of past dynamic memory allocation literature
between the years of 1961 and 1995 [30]. It presents and compares models, strate-
gies, policies and mechanisms of existing allocators. The survey present by Wilson
et al forms the basis of this thesis that we will build upon.

Storage allocation can be over main memory or over persistent storage such as
disk. Allocating over disk is different since disk accesses are much more expensive

7



CHAPTER 1. INTRODUCTION

than memory accesses and reducing the number of disk accesses during allocation
and deallocation of space is a requirement in such case. Iyengar et. al have already
developed efficient strategies for allocating space over persistent storage, but they
focus on allocating over raw disk and they only consider free lists for tracking free
space [16].

In contrast to this, in this work we focus on allocating blocks within a single
sparse file. The file stores the contents of a key-value database which is solely
consisted of this file only. The difference with directly managing disk space lies
on the fact that the filesystem sits in between. This means that in many cases
the operating system’s cache and filesystem implementation may interact with the
database system. Understanding these interactions is an important aspect of this
design.

The database file is divided into extents. An extent is a logical unit of database
storage space allocation made up of a number of contiguous data blocks. The allo-
cator needs to manage the space inside the database file and satisfy allocation re-
quests when write transactions need new extents for storing database data. Hence,
the allocator’s speed directly affects the write performance of the database making
it a critical component of the whole system. It is also the allocator’s responsibility
to grow or shrink the database file accordingly when needed.

Something that differentiates a database allocator from a general purpose mem-
ory allocator, is that its internal data structures and state must not become corrupt
in the event of unexpected system failures or crashes. The allocator must suffer no
loss of information in such cases and a fast startup time from a cold state is also
important. Additionally, certain characteristics of the database impose further
requirements to the allocator.

1.3 Objective of thesis

The objective of this thesis is to develop a design for a storage allocator that will
be implemented as a part of a new key-value database.

All of the following requirements must be satisfied:

• The allocator needs to be reasonably fast since its performance directly af-
fects the overall performance of the database system. It must be able to
satisfy allocation and deallocation requests in time at least logarithmic to
the number of the free extents available to the system.
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CHAPTER 1. INTRODUCTION

• The allocator needs to be crash resilient and the database image must be
consistent at all times. The allocator’s internal structures must remain intact
in the event of unexpected system crashes.

• Quick recovery from system crashes is required.

• Number of disk accesses for satisfying allocation and free requests should be
minimized.

• Unused database space must be deallocated from the filesystem.

• The allocator must never reclaim live storage space. If a database transaction
tries to free storage space that is accessed by another transaction, this action
must be deferred.

• Due to the concurrent readability characteristic of the database the allocator
needs to support a serialized extent allocation mechanism and a parallel and
asynchronous extent free mechanism.

1.4 Assumptions

Linux is the initial target platform of the key-value database and because of this
reason Linux-specific system calls are mentioned throughout the text. However,
most other operating systems and environments support functions similar to the
ones referenced here.

Because the database file will be memory mapped a 64-bit environment is
assumed. Modern 64-bit CPU architectures such as x86 64 and ARMv8 support
48-bits of virtual address space allowing the memory map and consequently the
underlying file to be as large as 256TB.

On the other hand, 32-bit systems are not a realistic option for running a
memory mapped database. The virtual address space of each process in 32-bit
systems is 4GB part of which is also normally used for mapping the OS kernel.
4GB or less is not a practical size limit for a database and this is why 64-bit
systems are targeted.

Finally, the underlying file system is assumed to support sparse files. Sparse
files ensure that unused database space can be deallocated from the filesystem and
disk when needed. XFS, ext4, Btrfs, ZFS and NTFS all support sparse files.
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CHAPTER 1. INTRODUCTION

1.5 Thesis structure

This thesis is organized as follows. Chapter 2 discusses the new key value database
system that will be developed and explains some of its characteristics and internal
design. Chapter 3 is an overview of memory allocation concepts and low level
mechanisms. Chapter 4 presents our proposed design for the extent allocator of
the database. Chapter 5 concludes the thesis and proposes future work directions.
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Chapter 2

Key Value Database Design

In this chapter the database system for which the storage allocator design was
developed is studied. Studying the internal design of the database system is very
important since this is what defines the allocator’s requirements but also imposes
certain limitations to it.

Initially, the internal organization of the data is presented along with the high
level overview of the different database levels. Then the concepts of memory
mapping and concurrent readability are introduced and discussed. Finally, low
level mechanisms such as copy on write and superblock swapping are explained
along with the problems they solve.

2.1 Internal organization of data

Multiple tables can exist in the key-value database. Each table internally is stored
as a B+ tree supporting a specific type mapping. For example, there could be an
“int: int” tree, mapping integer keys to integer values and an “int: char *” tree,
mapping integer keys to string values.

A B+ tree is a self-balancing tree having a variable number of children per
node. Each internal tree node contains only keys (instead of key-value pairs) and
pointers to child nodes. Values are only stored in leaf nodes and the leaf nodes
are linked together forming an ordered linked list. An illustration of a B+ tree is
shown at Figure 2.1.

All tree nodes have the same fixed size. When a value is too large to fit in a
leaf node, it is stored in another extent and a pointer to this extent is stored as
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the value in the key value pair. For example, a 7MB jpeg picture could not fit in
the leaf node of any database tree and it would require special handling separate
to the tree management.

Figure 2.1: A B+ tree. Values are stored in the leaves and leaf nodes form an
ordered linked list. Asterisks next to keys represent the presence of a value in the
node.

B+ trees index data by key and offer fast lookups of O(log n) time complexity,
making a good choice for storing the data internally. The only difference of the
database’s B+ trees with the textbook B+ trees is that in the database leaf nodes
are not linked together.

2.2 Database layers

When seen from a high level architecture point of view, the database is consisted
of three distinct layers.

The top layer is the “tree layer”. This is in the form of a read or write trans-
action presented to the consumer. From this layer any of the trees that exist in
the database can be accessed.

The middle layer is the “transaction layer”. This manages the set of trans-
actions in trees and is responsible for cleanup of unused tree nodes and compo-
nents once transactions end. Only two types of transactions are supported by the
database; read transactions also known as “readers” and write transactions also
known as “writers””. Transactions are completely isolated.

The lower layer is the “extent layer”. It provides storage space for the layers
above on request, and frees space when no longer required. Database storage is
split into extents. An extent is a logical unit of database storage space allocation
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made up of a number of contiguous data blocks. The extent layer is implemented
by the storage allocator.

2.3 Memory mapping

The whole database file is mapped into memory. That means that a contiguous
segment of the process’s virtual memory has been assigned a direct byte-for-byte
correlation with the database file. On Linux, a memory mapping can be created
using the mmap system call.

The concept behind using a memory mapped file is that memory and disk are
treated as if they are the same. When data are fetched from the database the read
comes directly out of the memory map and there is no need for user space memory
buffers, memory copying or memory allocation. This is known as “zero-copy” since
no data needs to be copied between the kernel and the user space [3][27].

Changes or writes to the memory map are carried through to the underlying
file and stored on disk. Again there is no need for write buffers and buffer tuning.
As a consequence, there is no need for application level caching either. In such a
case the system relies on the operating system’s caching mechanisms [3].

The virtual address to which the file is mapped into changes every time. That
means that no absolute pointers shall be saved in the database file. Pointers rela-
tive to the beginning of the mapping can be used instead. An “address translation
mechanism” is needed in order to translate relative pointer to absolute pointers
and vice versa.

2.4 Concurrency support

The key-value database can be characterized as “concurrently readable”. A con-
currently readable system is defined as a system where 0 or 1 writers can act in
parallel with multiple readers. At any given time only a single write transaction
can be operating in the database. We say that writers are serialized.

This has the following consequences for the database system:

• Writers do not block readers.

• Readers do not block writers.

• No deadlocks can ever exist in the database.
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• Reads scale linearly with available hardware resources.

The database system can be accessed by a single program or process only, so no
multi-processing is involved. Concurrency comes from multiple threads executing
in parallel within the same process.

Writers being serialized means that no multithreading support is required from
the extent allocator, since only write transactions modify the allocator’s structures
in a way that requires locking. This will be further discussed in Chapter 4.

2.5 Copy on write

Copy-on-write is a resource management mechanism used to efficiently implement
a copy operation on modifiable data structures. In the case of the database system,
all transactions must be isolated operating on their own personal “snapshot” of
the database. This essentially means that each transaction must maintain their
own copies of the database trees. However, making a deep copy of all database
trees for every new transaction is an expensive and inefficient operation that also
consumes excess storage space which may cause out of space conditions for the
system.

In contrast, copy-on-write is a technique that helps reduce this overhead. With
copy-on-write only modified nodes need to be copied and the rest of the nodes are
shared between the trees. This means that the only excess storage consumed is
between a former data generation and the current one. At best, only a single tree
node may be copied, but in cases of complete data rewrite, the entire tree is copied.

Copy-on-write works as follows. When a new write transaction is initiated, it
initially shares the same root node with the previous committed read-only tree.
When the new transaction needs to modify some node of the tree, it first copies the
data within the node to a new memory location. Modifications are then performed
on the new node. This new node is now owned by the new transaction tree and
the old node belongs to the previous tree. All other nodes are shared by both
trees.

Figure 2.2 can serve as an example for understanding the concept better. Cur-
rent transaction A, a read transaction, is operating owning the tree whose root
node is root 9. A new write transaction B is launched, sharing the same tree as A
initially. When B needs to modify leaf 8, this node is first copied into leaf 12 and
then modified. Then branch 6 has to be modified too since it contains a pointer to
leaf 8 that must be updated, and root 9 has to be modified as well for maintaining
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a pointer to branch 6 that has just been altered.

This series of copy and write operations results in a new tree with root 13 as its
root node owned by transaction B. The two trees share six nodes between them;
nodes 1 to 5 and node 7. The trees have to co-exist as long as both transactions
are alive. When transaction A terminates, nodes 9, 6 and 8 can be reclaimed as
long as there are not other references to them.

Figure 2.2: Illustration of the copy-on-write technique. Read transaction A owns
the root 9 tree and write transaction B owns the root 13 tree. Various nodes are
shared between the two trees.

An important observation is that every leaf node modification is propagated up
to the root node and all the nodes in between have to be updated as well. Changes
being propagated is the reason for which the leaf nodes of the database’s B+ trees
are not linked together in contrast to the textbook B+ tree definition. If that was
the case, many more nodes would need to be copied in every tree modification.
For example, a modification of the rightmost leaf node would result in the entire
tree being copied.

2.6 Crash resilience

Crashes may happen at any time causing unexpected termination of the database
system. Crashes happen because of application bugs, operating system bugs, hard-
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ware failures or simply because of sudden loss of power. Nevertheless, the database
image must remain consistent at all times.

In case of an unexpected system failure the database file should not become
corrupted. This affects the overall design of the allocator since it has to ensure that
its internal structures are always valid and consistent1. If the internal structures
become corrupted that would lead to “orphaned” extents. These extents of which
the allocator lost track would be hard to reclaim and reuse without a full scan of
the database content. Additionally, allocated extents could potentially appear as
free risking data to be overwritten.

The database system must be able to quickly recover from crashes. Copy-on-
write helps prevent corruption of the database data trees since live data are never
overwritten when using it. Even if the database system crashes in the middle of
a write operation, a consistent copy of the tree of the last committed transaction
will be present and will be used after the system comes up again. This removes
the need for write-ahead logging and transaction log cleanup maintenance.

2.7 Superblock swapping

Pointers to the root nodes of the last consistent tree images are stored both in
memory and on disk in a special block called the superblock. The superblock
is a database block containing various metadata about the database such as its
size, various flags and the above mentioned pointers. Upon system startup the
superblock is examined and the position of the root nodes of the database trees
is determined. When a transaction modifies a tree it results in a new root node
being created which must be then stored in the superblock.

Updates to the superblock cannot be in place since that would risk the database’s
consistency if a crash occurred during a superblock update. The superblock must
be copy-on-write too in order to prevent that from happening. For this reason
certain extents at fixed locations are reserved and used to store superblock copies.
When the superblock has to be modified, the contents of the current superblock
are copied into one of the reserved extents2 and changes are made there.

Additionally, the superblock contains an integer field called priority. When

1This is also another aspect that differentiates the database’s extent allocator from general-
purpose memory allocators which do not care about crash resilience.

2It can by any extent except for the one holding the current superblock.
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a transaction that has updated the superblock commits3, the priority field must
be incremented by one. The priority must always be the last field to be updated
in the superblock. When the system is started again, it examines all superblocks
stored at the reserved extents and picks the one with the highest priority. This
superblock contains pointers to the last valid and consistent tree images.

If a transaction didn’t update the superblock and change its priority before
a crash occurred it is like it never really happened. After a system restart, any
changes made by that transaction will not be visible since the last valid superblock
will be used containing pointers to previous consistent images of the database trees.
The very action of committing a transaction is therefore equivalent to updating
the superblock’s priority field4.

Prior to updating the priority field an msync call must be issued on the memory
mapped file. The msync system call flushes any changes made in memory back to
the filesystem thus synchronizing the file with the memory map. To ensure that
a transaction committed properly two msync calls are required. One just before
updating the priority field and one immediately after updating it. Otherwise
memory pages may be flushed to disk in random order risking the consistency of
the database file. A commit can be considered persistent and complete only after
the second msync call succeeds.

An important consequence of the copy-on-write and superblock swapping mech-
anisms is that there is no need for any special recovery procedures after a system
crash. Upon startup the database executes the exact same series of steps indepen-
dently of whether the system shut down normally or not.

2.8 Allocations before liberations

Due to the copy-on-write mechanism a certain allocation pattern is observed. Each
write transaction modifies one or more leaf nodes and their ancestors by first
copying them into new extents. That means that each write transaction must
allocate a certain number of extents and free the same number of same sized
extents or less in case some of them are referenced by other transactions.

3Each and every write transaction has to update the superblock since changes to any database
tree result in a new root node.

4A write transaction to be accurate, since readers do not need to modify the trees nor the
superblock at all.
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An important question arises that if the order of these allocations and deallo-
cations matters. It turns out that the order here is very important because in a
copy-on-write system extents freed during a transaction can only by allocated for
use in a subsequent transaction [20, Lemma 1 on p. 4]. Hence, either this logic
must be implemented in the allocator or a simple convention can be used instead.

The convention to avoid these issues is that write transactions must allocate all
extents they will utilize first. When the write phase is complete but the commit
not completed, unused extents will be freed. By following this simple convention
the allocator does not need to implement extra logic for preventing freed extents
from being allocated in the same transaction.

18



Chapter 3

Memory Allocation Concepts and
Mechanisms

This chapter provides the reader with the necessary background on dynamic mem-
ory allocation. We initially introduce relevant terminology and concepts such as
memory fragmentation and ways to avoid it. Then we discuss the low-level mech-
anisms used by allocators in order to keep track of free space and satisfy allocation
requests.

Although discussions on memory allocation normally refer to main memory, all
concepts and mechanisms described in this chapter can be applied to allocation
over persistent storage devices such as disks as well. For this reason “memory”
and “storage” are used interchangeably for the most part of this chapter.

3.1 Dynamic memory allocation

With dynamic memory allocation an application can request new memory for its
purposes while operating and free it at any time or any order. This comes in
contrast with static memory allocation where all memory that is going to be used
by the program is known at compile time and fixed until the program terminates.

Underneath, the memory space is managed by the allocator and is divided into
smaller blocks or chunks of variable sizes. A block is consisted of a number of
contiguous words of memory (or file system blocks or disk sectors depending on
the case). A memory word on most modern machine is four 8-bit bytes (32 bits)
or eight 8-bit bytes (64 bits) depending on the CPU architecture. Each block of
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memory can then be in two distinct states: allocated (in use) or free (available for
allocation). Figure 3.1 illustrates that.

Figure 3.1: Memory blocks made up from a number of contiguous words. Each
rectangle represents a memory word. Sequences of white rectangles represent free
blocks and sequences of green rectangles represent allocated blocks.

For performance reasons memory blocks are aligned on word boundaries and
normally partial words are not allocated. That means that requests for non-
integral numbers of words are usually rounded up to some word or other multiple
[30, section 3.2]. Allocators need to keep track of which blocks are free and which
are not and various data structures can be used for this kind of bookkeeping.

The memory area managed by general-purpose memory allocators is called
heap1. When the allocator needs more memory it can request it from the operating
system via system calls. That means that the heap’s size also changes dynamically
and the heap can grow or shrink while the program is running.

3.2 Memory fragmentation

Fragmentation is generally defined as the inability to use memory that is free and
is a source of wasted memory in the allocator [14, section 2.4]. Traditionally it is
divided into internal and external fragmentation.

3.2.1 Internal fragmentation

Internal fragmentation is defined as wasted memory inside an allocated block. This
happens because more memory is allocated than required in certain circumstances.

1Not to be confused with the heap data structure.
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For example, if an allocator is only allocating chunks of memory that are multiples
of 4 bytes and the program makes an allocation request of 13 bytes, it will get back
a chunk of memory that is at least 16 bytes. This remainder is wasted causing
internal fragmentation. [30, pp. 8-9]

Figure 3.2: Illustration of internal memory fragmentation

3.2.2 External fragmentation

External fragmentation arises when free blocks of memory are available for allo-
cation, but are too small to hold objects of the sizes actually requested by the
program. That practically means that while there is enough free memory in total
to satisfy an allocation request, this memory is not contiguous thus it cannot be
used to satisfy the request. [30, pp. 8-9] Figure 3.3 illustrates that.

Figure 3.3: Illustration of external memory fragmentation. After the free request
in step 4 there is a total of 32KB free space. However this space is not contiguous
causing an allocation request of 32KB to fail.
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3.3 Combating fragmentation

Fragmentation is one of the main problems that a memory allocator has to deal
with. However, a study from Johnstone has indicated that well-known allocation
policies suffer from almost no true fragmentation when implemented properly [17].
Memory fragmentation is combated thanks to certain techniques some of which
are presented below.

3.3.1 Splitting large blocks

When an allocation request is made, it is possible that all available memory blocks
are much larger than the size requested by the application. What is possible in
this case is to split some large block into two or more “pieces” one of which having
the requested size. This memory block can then be used to satisfy the allocation
request and the remainders are returned in the free space pool. Splitting large
blocks is a way to combat internal fragmentation and decrease wasted space.

3.3.2 Coalescing adjacent free blocks

When two or more adjacent memory blocks are free they can be merged together
by the allocator forming a single large free memory block. Coalescing blocks is the
opposite of splitting a large block into smaller ones and it can be used in order to
reduce external memory fragmentation.

Coalescing can be attempted immediately when a block of memory is freed
which is known as immediate coalescing or be deferred to some point in the future
in which case it is called deferred coalescing.

The rationale behind deferred coalescing is that an allocation request for the
same size that just got freed may follow very soon or even immediately. By defer-
ring it for later we avoid wasting time on coalescing two blocks and then shortly
splitting them again. Coalescing can be performed periodically or deferred until all
memory runs out. Proper scheduling of coalescing requires a great deal of research
and analysis which is beyond the scope of this document.

3.3.3 Compacting memory

Another technique known as compacting memory, moves all allocated blocks into
consecutive locations. As a result, free memory blocks come together and then
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can be coalesced reducing or even eliminating external fragmentation.

Memory compaction is not normally used by general-purpose memory alloca-
tors since that would invalidate all application pointers and it would require very
special handling. However, memory compaction is accessible when requested from
filesystems that implement the correct operations. This is commonly referred to
as defragmentation.

3.4 Keeping track of free space

Allocators internally need a set of data structures to keep track of locations and
sizes of free blocks. When an allocation requests is issued, the allocator searches its
internal structures in order to find a memory block suitable to satisfy the specific
request. Normally, each block of memory has some metadata associated with it.

3.4.1 Block headers

Most allocators use a header field within each memory block to store metadata
specific to the block. This metadata most commonly includes the block size. Apart
from this it can include other useful information about the block such as whether
it is allocated or free, where the next free block is located etc.

This header field is not directly visible to the user. As Figure 3.4 illustrates
the address returned to the user is the one right after the end of the block header.
Because the size of the block header is fixed, we can go back from that address
to the start of the block header by doing a simple subtraction. So when the user
wants to free a memory block they do not need to explicitly provide us with the
block size. By doing simple pointer arithmetic we can examine the block header
and see how large is the block that we need to free.

Additionally to block headers, sometimes footers may be contained in memory
blocks as well. This helps in the process of coalescing where the allocation status
of the free block’s neighbors must be checked. Checking the next block is easy.
We know where the next block’s header begins, because this is where our free
block ends and we already know our free block’s size. Checking the previous block
is more challenging since we don’t know its size, hence we don’t know where its
header is located.

For this purpose Knuth introduced the concept of boundary tags [22]. Each
block of memory additionally to its header may also have a footer field known as
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boundary tag, repeating information about its size and its allocation status. We
can then use the previous block’s footer to check whether it is free and jump back
to its header if needed knowing its size.

Figure 3.4: An illustration of the “hidden” header field and the actual user memory
contents that constitute a memory block. The addressed returned to the user is p
and not the starting address of the header.

Block headers and footers impose an overhead since they consume some portion
of the available memory, so it is important to keep them as small as possible for
general purpose allocators. Standish has introduced an optimization for reducing
the boundary tag overhead [28].

3.4.2 Link fields within block headers

Usually one or more fields inside the block header are used to point to other free
or allocated blocks of memory. A common technique is to have the free blocks
form a single linked list. This way the list nodes are embedded in the free block
themselves. Such a list is called a freelist. When a block is allocated, it is removed
from the freelist and returned to the user. Later, when this block is freed, it is put
back on the freelist so it can be re-used to satisfy new requests. An illustration of
a freelist can be seen in Figure 3.5. Link fields can be used in order to form other
linked data structures too.

3.5 Mechanisms and policies

We will now present a relatively conventional taxonomy of allocators based mostly
on the mechanisms and data structures used for their implementation. Addition-
ally, certain allocation policies will be explained.
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Figure 3.5: Link fields within block headers form a circular singly-linked list.

3.5.1 Sequential fits

Several classic allocator algorithms are implemented using a single linked list of
all free blocks similar to the one we discussed above. This list might be singly-
linked or doubly-linked. In order to find a free block, the freelist is searched with
some algorithm or allocation policy which also defines the variant of the so-called
sequential fit. The three more popular variants are best-fit, first-fit and next-fit
while there are more that are less common.

3.5.1.1 Best-fit

A sequential best-fit allocator has to traverse the whole linked list starting from
the beginning, searching for the smallest available free block large enough to satisfy
the allocation request. It can stop earlier if a perfect fit is encountered. This policy
can be used to minimize internal fragmentation of blocks. However it is slow since
it takes linear time to traverse the whole list in the normal case where a perfect
fit is not available [30, p. 30].

3.5.1.2 First-fit

A sequential first-fit allocator searches the freelist from the beginning and uses
the first block large enough to satisfy the allocation request. If the block is much
larger it can be split into two blocks and the remainder is put back to the freelist.
The advantage over best-fit is that normally there is no need to traverse the whole
list. A problem that arises though, is that many small blocks tend to accumulate
near the beginning of the list as a result of splitting larger blocks. These small
blocks can increase search times and make the allocator slow when larger blocks
are requested [30, pp. 30-31].

25



CHAPTER 3. MEMORY ALLOCATION CONCEPTS AND MECHANISMS

3.5.1.3 Next-fit

Next-fit is just a simple variation of first fit. A pointer is used to track the position
in the list where the last search was satisfied. Then, the next search continues from
that position. As a result, searches do not always begin from the same place. Next-
fit was initially introduced as an optimization of first-fit, however it has been shown
to cause more fragmentation than the other sequential fit variants [30, pp. 31-32].

3.5.2 Segregated free lists

The problem with having a single potentially lengthy list is that search times are
O(n). For this reason the segregated free lists mechanism is commonly used.

In this technique we have many lists, each one holding blocks of a particular
size or a range of sizes called size class. Upon allocation, a block is removed from
a free list matching the allocation size requested and upon free the freed block is
similarly added to a free list of the matching size. The benefit of using separate
lists is that for certain sizes, depending on the number of lists we use, we can
achieve constant time allocation.

Figure 3.6: Segregated lists illustration

The segregated free lists mechanism probably originates from a paper by Com-
fort [5]. Both Doug Lea’s dlmalloc and GNU libc’s malloc implementations use
segregated lists which they call bins [23][24].
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3.5.3 Tree structures and indexed fits

More sophisticated data structures such as tree structures can be used in order to
index blocks by exactly some characteristics of interest such as block size or block
memory address. Usually B trees, B+ trees or Red-Black trees are used but any
self-balanced tree or other indexed data structure could be used. For example, the
“Fast Fits” allocator uses a Cartesian tree [29]. Wilson et al. refer to this kind of
mechanism based on indexed structures as indexed fits [30, pp. 40-41].

Balanced trees support insert, delete and search operations in O(log n) time.
As a result, a data structure indexed by block size can allocate new blocks of any
size in logarithmic time and it can be used to implement a best-fit policy. Indexing
by memory address or some address offset is useful when we care about storage
locality, for example when we want to allocate a block near some other block.
Additionally, it makes it easer to search for neighbors when trying to coalesce
blocks.

The XFS file system uses two B+ trees to track its free space; one B+ tree
that is indexed by block number and another one that is indexed by the size of
the free space block [31]. Likewise, the jemalloc allocator - used in FreeBSD’s libc
and previously in Firefox - makes use of a red-black tree to store metadata about
blocks falling into its largest size class. For its smaller size classes it employs the
buddy technique which we do not describe in this text [6].

3.5.4 Bitmaps

A bitmap is a simple vector of one-bit flags, with one bit corresponding to each
word of the whole memory area or each file system block in the context of a file
system block allocator. Those bits are used to indicate the allocation status of the
corresponding blocks. Figure 3.7 illustrates this concept.

When the bitmap is large, bitmapped allocators are slow because search times
are linear. However, an advantage they have is that they incur much less space
overhead in comparison to block headers, thus wasting less memory. Additionally,
bitmaps support localized searching since free memory is indexed by address order.
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Figure 3.7: Illustration of a bitmap used by a file system’s block allocator. Each
black rectangle represents an allocated 4K file system block and its corresponding
bit is set in the bitmap. White rectangles represent free blocks and their bits are
not set in the bitmap. In this case 100 bits (∼13 bytes) can be used to describe
the allocation status of 400K of file system space.

According to Wilson, bitmapped allocation has never been used in a conven-
tional allocator. Instead it is used or had been used in file system allocators and
mark-sweep garbage collectors [30, p. 42].
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Chapter 4

Design for a Crash Resilient
Extent Allocator

This chapter introduces a theoretical design for the extent allocator of the key-
value store. Both the in-memory structures and the on-disk format are described
and the allocation and deallocation operations are explained. Additionally, the
mechanisms making the allocator crash resilient are presented.

4.1 Extent sizes

Extents are going to be allocated in sizes that are multiples of 4K. This value
matches the physical sector size of modern hard disks and solid state drives, en-
suring extent alignment on 4K boundaries. The reason for which we want to match
the physical sector size is preventing unnecessary disk accesses under certain cir-
cumstances. For example, a single 4K extent which is not properly aligned would
require two disk fetches instead of one in order to retrieve its content.

It is important to note that the database’s trees will also have nodes sizes of
about 4K for the same reason1. That means minimal or no internal fragmentation
at all inside allocated extents. In contrast to general purpose memory allocators,
we never expect allocation requests of a few bytes only.

1Tree node sizes will actually be a little smaller than 4K allowing space for extent metadata.
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4.2 In-memory data structures

In our proposed design, two B+ trees are used for tracking free space usage. One
tree is indexed by extent size, which we will refer to as the Size Tree. The second
tree is indexed by extent address offset relative to the beginning of the file’s memory
mapped base address. We will refer to this tree as the Offset Tree.

Both trees track free extents only. Specifically, keys of the Size Tree are 64-
bit unsigned integers representing extent sizes. The values of the tree are 64-bit
pointers, where the highest bit is used as a flag indicating whether the free extent
is reclaimable or not. We will explain the purpose of this bit later. The lower 63
bits store the extent’s address offset.

The Offset Tree can be though as the opposite of the Size Tree. Its keys are
64-bit offsets. While 63 bits or even less would actually be sufficient for storing the
offset value, we include the extra bits to achieve data structure alignment. The
tree’s values are 64-bit extent sizes.

Both of these tree structures are in-memory only and their nodes are not em-
bedded into extent headers2. Having the data structures in-memory only allow for
faster data structure manipulations, faster searches and reduced number of disk
accesses. Another benefit is that on-disk metadata overhead is significantly less
reducing the percentage of wasted disk space.

4.2.1 Data structure choice rationale

To explain why we believe that indexed structures such as B+ trees is the best
option to keep track of free extents for the database, we compare them with the
alternatives presented in Chapter 3.

While bitmap operations can be made fast enough to use when the underlying
storage space is not too large, linear search times cannot be avoided. This becomes
much worse as the database grows and we can expect the database file to become
very large. Additionally, bitmaps track both free and allocated blocks while the
indexed tree structures keep track of free extents only. This means both faster

2Since the trees are in memory, a node size of 64 bytes can be used in order to match the
cache line width. 64 bytes allow for 3 keys and 4 pointers to be stored inside each single tree
node, leaving an extra space of 64 bits. That extra space can be used for storing metadata about
the node such as a checksum or other.
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searches and less space overhead for the trees as the database becomes larger and
larger.

When it comes to segregated lists the problem is that we cannot have a different
list for each possible extent size. Especially, in the case of a database where an
allocation request can be anywhere from a few kilobytes to a few gigabytes or even
larger. Thus, we have to divide sizes into different size classes, but then searches
inside those lists take linear time. Furthermore, when the list for the size requested
is empty we need to iterate over the different list heads until we find one that is
not empty. This operation takes linear time as well3.

In contrast to that, all B+ tree operations including searches take logarithmic
time which is considered to be fast enough for our purposes. Furthermore, as the
offset tree supports locality searches, this makes coalescing easier without the need
for on-disk boundary tags. This is also safer as it eliminates a potential source of
corruption and inconsistency as flushing the boundary tags would require its own
synchronization mechanisms.

4.3 On-disk extent headers

The only kind of metadata that we need embedded into extents is their sizes. This
can precede the actual data forming an extent header of a single field.

Maintaining extent sizes on disk is necessary in order to free extents without
requiring the caller of the free routine to explicitly provide us with the extent
size. This information cannot be extracted from the in-memory B+ trees, since
they only maintain information about free extents and not allocated ones. Saving
allocated extents’ sizes in extent headers on disk can solve this problem.

The size field has to have the same length as the sizes stored in the in-memory
trees i.e. 64 bits long. To get the actual extent size in bytes we need to multiply
this value by 4 KB. Thus, the theoretical maximum for an extent size is 264 ∗4 KB
= 64 ZB (zettabytes).

3A possible optimization is to have a binary search tree maintaining pointers to the different
list heads but this is also O(log n) and makes the implementation even more complex.

31



CHAPTER 4. DESIGN FOR A CRASH RESILIENT EXTENT ALLOCATOR

4.4 Satisfying allocation requests

Whenever an allocation requests comes, the first thing that we need to do is add
the extent header size to it (64 bytes) and round up the result to the nearest 4K
multiple. This is the actual size of the extent that we need to return back to the
caller.

In order to find an extent with such a size we perform a lookup operation on
the Size Tree. We can then distinguish from the following cases:

• An extent of the requested size is present on the tree. In that case we use
this extent to satisfy the request.

• An extent of the requested size is not present on the tree, but there is an
extent of a larger size. In that case we split the large extent into two and
satisfy the request with one of the resulting extents.

• There is no extent of a size equal or greater than the requested one. In
that case we perform the coalesce operation trying to coalesce adjacent free
extents. After this operation is complete the tree is searched again for an
extent of a size large enough to satisfy the request.

It is important to note that only extents for which their reclaimable bit is
set are considered for allocation. Non-reclaimable extents are completely ignored
during this lookup.

If everything else fails we try to grow the database file by at least the size of the
requested extent. If this operation succeeds we are able to proceed by performing
a tree lookup again as previously explained. In case we are unable to grow the file
we need to abort the current write transaction.

4.4.1 Allocating exact fits

Once an exact fit has been encountered in the Size Tree the following actions have
to be performed in order to satisfy the allocation request:

a) The key/value pair has to be removed from the Size Tree and the extent
offset must be noted.

b) The corresponding key/value pair has to be removed from the Offset Tree
as well. The address offset from the previous step is used as the key for the
removal operation.

c) The size field on the extent header has to be updated.
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Finally, the extent offset plus the header size have to be added to the base
memory address where the database file has been mapped by the mmap call, as
seen below:

returned address = mmap base address + extent offset + header size

The resulting memory address is returned to the caller.

4.4.2 Splitting larger extents

When free extents matching the requested size do not exist, some larger extent
has to be split in order to avoid internal fragmentation. The larger extent is split
into two extents. One extent of the requested size which is returned to the caller
and the remainder extent which is put back on the trees.

The search operation on b+ trees can work in such a way that if the queried
key is not found, the next key can be returned instead. In case of the Size Tree,
that means that if a size is not found, an extent of the next larger size available
will be returned.

Suppose X is the size requested and Y is the next available size of an extent
located at y. The split operation can be implemented as follows:

a) The extent of size Y has to be removed from both trees.

b) The extent of size Y - X located at y + X has to be added to both trees.

c) The size field of the extent located at y has to be updated with the value X.

For example, let’s suppose that a 4K extent has been requested but the next
available size that has been found in the Size Tree is 12K and its offset from the
beginning of the file’s memory mapped base address is 0xff000000. We first remove
this extent from both trees. Then we add the key/value pair “8K : 0xff000000 +
4K” i.e. “2 : 0xff001000 ” to both trees. The last step is to update the extent
header located at mmap base addr + 0xff000000 with the value 1. The memory
address that is finally returned to the user is mmap base addr + 0xff000000 +
0x40.

4.4.3 Coalescing extents

Coalescing is deferred until there is no free extent large enough to satisfy an allo-
cation request.
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Due to the design of the B+ Tree, an ordered linked list of all Offset Tree nodes
is present which allows for efficient coalescing operations. We begin traversing the
list starting from the first key of the first node. For each offset value we add its
corresponding size to it and check if it matches the next key in the list. If the
values match, it implies that two consecutive free extents have been encountered.
We continue checking the list to determine if there are further extents adjacent to
the original matched pair. We then have to merge the adjacent extents encountered
into a single one. This is done by removing the individual key/value pairs from
both trees and adding a new one representing the resulting extent.

Two alternatives can be used in the coalescing process. One is to traverse the
whole list and coalesce everything possible. The other alternative is to stop as
long as one of the resulting new extents is large enough to satisfy the allocation
request which triggered the coalescing operation.

Due to the copy-on-write mechanism of the database and the fixed-size tree
nodes, allocation requests for the same extent size will probably follow. For this
reason it is better to complete the coalescing operation instead of stopping in the
middle, in order to avoid starting from the beginning in the next allocation re-
quest. This is also the reason for which we prefer deferred coalescing to immediate
coalescing. We want to avoid merging extents of sizes that will probably need to
be allocated again shortly.

4.4.4 Growing the database file

Growing the database file is deferred until there is no other way to satisfy an
allocation request. The database can grow by some fixed amount of space each time
e.g. 256 MB. Of course if the allocation request which led to the grow operation
is larger than that, even more space has to be allocated from the filesystem.

First, the database file has to be enlarged using the ftruncate Linux system call.
Then, the memory map needs to be updated in order to reflect the change. This
is done using the mremap system call. The extra file space needs to be marked as
a new large extent and be added to both trees. Further allocation requests can be
satisfied by splitting this new extent into smaller pieces.

When the MREMAP_MAYMOVE flag is specified for the mremap call, the memory
map may be relocated to a new virtual address. Absolute pointers into the old
mapping location become invalid and need to be recalculated using offsets relative
to the starting address of the mapping [26]. As a consequence, for this recalculation
to happen all existing read and write transaction must halt until the operation is
complete.
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Shrinking the database file requires a similar series of steps, assuming that a
contiguous free extent resides at the end of the memory map.

4.5 Deallocating space

Freeing extents from within a transaction requires special care, since we need to
be sure that no one else is ever going to access the same storage space again.
Additionally, we need to make sure that once space is marked as free inside the
database, this space is also reclaimed by the filesystem reducing the size of the
database on disk.

4.5.1 Liberation versus reclamation

The database allocator has a major difference in comparison to general purpose
memory allocators when it comes to freeing storage space. In a general purpose
memory allocator, when some memory region is freed by the user, the allocator is
free to reclaim that space and use it for further allocations. However this is not
always the case in a concurrently readable database.

It is possible that while a write transaction frees an extent after copying its
contents to a different extent due to the copy-on-write mechanism, some older read
transaction is still accessing the same extent’s contents. That means that the ex-
tent’s space cannot be reclaimed yet, until all read transactions that reference this
extent terminate. Thus, freeing an extent and reclaiming an extent are considered
two distinct operations and are treated differently by the allocator.

This distinction is reflected in the Size Tree by the reclaimable bit. When this
bit is off, it means that even though the corresponding extent is free in the current
snapshot of the database it cannot be allocated to a new transaction yet. When
the bit is on, the extent is both free and available for satisfying allocation requests.

4.5.2 The free/reclaim interface

Two different functions have to be offered for freeing and reclaiming extents:

• int free extent(void *ptr, bool reclaimable) // for writers

• int reclaim extent(void *ptr) // for readers
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The free extent function frees the extent pointed to by ptr and marks it as
reclaimable or not depending on the value of the reclaimable flag. This function
must be invoked by writers only. When the extent that is being freed is not
referenced by any read transaction, the reclaimable flag must be set, otherwise it
must be zero.

The reclaim extent function can be used to mark an extent as reclaimable. A
call to free extent for the same extent must always precede. The reclaim extent
should only be invoked by readers, and specifically upon the termination of the
last reader referencing an extent that has been freed before.

4.5.3 Freeing extents

When free extent is invoked, the extent being freed needs to be added to both free
space trees. For that to happen, the offset of the extent from the beginning of
the database file must be calculated first and its size must be extracted from its
header. Additionally, if the reclaimable flag is true, the corresponding bit must be
set on the Size Tree during insertion.

4.5.4 Reclaiming extents

When an extent is marked as reclaimable by some upper layer using the re-
claim extent call, it means that the extent is already present in the trees. The
only thing left to do is update the Size Tree by updating its reclaimable bit. From
now on, the allocation algorithm is free to use this extent in order to satisfy new
allocation requests.

4.5.5 Hole punching free extents

When the underlying filesystem supports sparse files4, the fallocate Linux system
call can be used along with the FALLOC_FL_PUNCH_HOLE flag in order to deallocate
filesystem space anywhere within the file, creating holes. Whole filesystem blocks
are removed from the file and subsequent reads from the freed range returns zeros
[7]. In case of a memory mapped file, the madvise call must be used instead with
the MADV_REMOVE option set.

4XFS, ext4, Btrfs, ZFS, NTFS all support sparse files
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This technique, called hole punching, can be used to create holes in the database
file where free extents reside in order to decrease the space occupied by the database
on disk. Additionally, the allocator doesn’t need to zero out storage space manu-
ally. Free extents are zeroed by the madvise/fallocate call ensuring a clean state
upon allocations of new extents. Hole punching can be applied only to reclaimable
free extents and only after the transaction marking them free commits.

While hole punching results in decreased disk space, it comes with a slight
performance overhead. Since the filesystem blocks backing free extents have been
removed from the file, at the moment we attempt to write to them again the
filesystem has to allocate disk space back, resulting in decreased write performance
for the database. This overhead is considered insignificant however compared to
unbounded growth of the database file.

4.6 Storing the free space image to disk

In order to avoid data loss and for keeping the database snapshot always consistent,
the in-memory data structures must be backed up to disk after each write trans-
action commits, since write transactions are the ones modifying the database’s on
disk state.

While storing to disk after each write transaction commit introduces some
performance overhead, this overhead is not that significant because:

• Only one of the two trees needs to be stored. Since the two trees are exact
opposites a single image can be used to build both of them.

• Only leaf nodes need to be stored. No internal nodes nor the root node.

• The trees will never get too large since they track free extents only.

• Coalescing also reduces tree nodes helping with keeping the tree small.

• Readers stay unaffected, the performance overhead affects only write trans-
actions.

Given that storing only one of the two trees is sufficient the question of which
one should be used is raised. The Offset Tree is a good candidate since it is only
modified by writers and writers are serialized. This means that nobody is going to
modify the tree while we are in the middle of processing a disk commit operation.

The Offset Tree therefore needs to be serialized and stored in a single contiguous
extent. For this purpose a few extents of fixed sizes are reserved at certain locations
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in the database file. If the image fits in those extents it can be written to any of
them as long as it is not the one holding the free space image of the running
database snapshot. In case the serialized image is too large to fit in one of the
reserved extents, a new extent is allocated and the serialized free space image is
written there. A pointer to the extent holding the free space image is stored in
the new superblock along with the image size.

4.6.1 Concurrent access to in-memory trees

In the previous section we saw that the Offset Tree is only modified by the writers
which are serialized. However, even if we chose to use the Size Tree for storing the
free space image there would be no problem either.

Readers do not alter the structure of the Size Tree in any way. Readers may
only flip the reclaimable bit flag of extents while a writer is in the middle of a store
operation. This is fine though since the information about extent reclaimability is
not stored to disk anyway and hence it doesn’t affect the operation. There is no
point of storing this information given that after a system restart all extents will
be considered reclaimable again. Therefore, it is perfectly safe to use the Size Tree
for storing the free space image to disk.

This actually also means that no special care needs to be taken for protect-
ing the in-memory B+ trees from data race conditions. No mutex or other lock
mechanism is required that would otherwise force writers to block readers and vice
versa annulling the concurrent readability property of the database.

4.6.2 Database startup

Upon database startup the free space structures need to be built in memory before
the system is ready to operate again. The superblock pointer to the free space im-
age is followed and both trees can be built from the stored nodes. The reclaimable
bit is set to 1 for all extents in the Size Tree since there are no read transactions
currently and all extents are available for allocation.

The fact that there is no need to scan the whole database image for rebuilding
the structures satisfies our fast startup requirement. Additionally, bulk loading
can be performed for quickly building B+ trees in memory from only the leaf
nodes, making this operation even faster.
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4.6.3 Consistency assurance

The write transaction is committed by updating the superblock’s priority but this
happens only after the free space image has been written to some extent and there
is a pointer in the superblock that points to it.

If the system crashes during an allocation operation or at any time before the
new superblock is written and its priority is updated, it’s like the last transaction
never happened. All extents that had been allocated during the last transaction
will be considered free and reclaimable after the system comes up again because
the last free space image will be used to construct the trees in memory. Any
data content changes during the transaction that crashed will be for all purposes
invisible. In all cases the database trees and the free space image will be consistent.

4.7 Disk extent header consistency

Extent sizes stored in extent headers on disk are not always valid for free extents.
For example, a crash may occur during a coalescing operation after the allocator
has updated the size field of the preceding extent but before the transaction com-
mitted. That would leave the preceding extent’s on-disk size header field with a
value larger than its real size.

On the other hand, extent sizes for allocated extents are always valid and this
is the reason why they can be used in the deallocation operation. These sizes are
always correct because the allocator updates them just before allocating the extent
and committing the transaction. If the transaction crashed, the extent wouldn’t
be considered as allocated. After the transaction has properly committed, the size
field is never altered by the allocator before the extent becomes free again.

Not having valid on-disk sizes for all extents has an important consequence.
It means that the in-memory free space structures cannot be rebuilt by scanning
the whole database image. Consequently, it is safer to store the serialized free
space image in more than one places for data redundancy purposes. For increased
security a checksum of the image can be stored on the superblock as well.

4.8 Minimized disk accesses

Having the free space data structures reside in memory results in minimal disk
accesses. Specifically, only a single disk access is required during an extent allo-

39



CHAPTER 4. DESIGN FOR A CRASH RESILIENT EXTENT ALLOCATOR

cation for updating the on-disk size field. Similarly, on deallocation of extents a
single access occurs in order to read the size field from disk but no accesses for
writing data are needed at all. Another disk access is required in order to write the
memory state on disk when a write transaction commits. Finally, the coalescing
operation can cause more disk accesses but this only happens periodically.
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Conclusions and Future Work

This thesis has thoroughly approached the research topic of persistent dynamic
storage allocation for concurrently readable crash resilient database systems. First,
we explored the characteristics and the mechanisms of the new key value database.
We then conducted a literature survey on memory allocation techniques. Finally,
we presented a theoretical design for the extent allocator of the database system
satisfying all of the requirements set.

We showed that B+ trees can be used in order to track free space allowing for
fast allocation and deallocation of extents in logarithmic time. Maintaining those
free space data structures in main memory results in minimal disk accesses.

The allocator takes into account the concurrent readability of the database and
its transaction isolation mechanisms distinguishing over liberation and reclamation
of extents. We proved that when this API is used properly it ensures that no live
storage is ever reclaimed. Furthermore, the allocator allows read transactions to
declare their extents as reclaimable in an asynchronous way. Extents reclaimed by
the allocator are also deallocated from the filesystem.

Finally, the allocator is resilient to system crashes. The memory state is writ-
ten to disk whenever a write transaction commits, without overwriting the last
free space image. This ensures that there is always a consistent snapshot of the
database and the free space map. Additionally, system start is reasonably fast
since there is no need to scan the whole database image in order to rebuild the
in-memory structures. Only the extent holding the free space image is accessed
and the structures are rebuilt quickly thanks to an available B+ tree bulk loading
algorithm.
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Our future work and research will focus on making extent allocations faster
and reducing the overhead introduced by serializing and storing the in-memory
structures to disk. We want to determine whether treating small extents specially
could increase allocation performance. Specifically, extents of size 4K are the ones
allocated most frequently since they are used for storing tree nodes. Maintaining
recently freed extents in a linked list instead of directly putting them back in the
trees could probably speed up allocations. Another thing to be considered is never
coalescing these extents. Furthermore, we want to examine the possibility of using
differential updates when storing the free space image on disk in order to make
this operation faster and increase the write performance of the database.
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