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Hepiinyn

Ta eavtaciakd abAqpoate wapovstdlovy pHeyaAn avénon oty OMUOTIKOTNTA
Tovg, Kupimg ot Hvouéveg IMoMrteleg Apepikng kot otov Kavaodd. Emiong pe v
EULPAVIOT OAO KOl TTEPIGGATEPOV IGTOTOTMV OV TPOGPEPOLV IGTOPIKA SEOOUEVOL V1o
KkéOe omop kot aBAntn, elvol mo €0koAo amd WOTE Yo KATOOV YPNoTn vo Ppet
OTOTIOTIKA Yo TO AOANpa mov tov evolapépel. Tavtodypova péBodot Kot aiydpiBuot
UNYovIKng pabnong eivar mpooPdoipol 6tov HEGO YPNOTN TOL YPNOUOTOIEL Evov
OKIOKO TTPOoSmTIKO VoAoyloth. H mpoosPacipdmra avty poali pe v e&éMén g
TEYVOAOYLOG UITOPOVV VO, GLVIVAGTOVV Y10l TNV ONovPYio LOVTEL®Y Tov TPoPAETOVY
Vv enidoon Tov gkdotote aBANT KOl KOT' EMEKTOOT VO dMGOLV GTOV YPNOTN
TAEOVEKTI O GE KATO10 OL0LYOVIGUO QOVTACIOKAOV 0OANUATOV.

Yg oauTV TNV OMA®UOTIKY €pyoacio avamtO&ape €va HOVTEAD UNYOVIKNG
uébnone, to omoio Pacileton otig Mponyobueveg emOOGES TOV 0OANTOV Yoo Vo
TPoPAEYEL TO QOVTOCLOKO TOVG oKOp. Aokiudoape TPels SpopeTikég pedddovg
povtelomoinong  ywoo  mwoAwopounon, Awavdopata  YmoomnpiEng,  I'poppikm
[MoAwvdpounon kor Mmeicwovy [Holvopounon. Avantdéope emiong pe v ypnon
SLVOUIKOD TTPOYPOUUOTICHOD €vav aAyoplBuo o omoiog emhéyel pe Paon Tig
TPOPAEYEIS HOG TOLG KOADTEPOVLS SVVATOVE TOUKTEC Yot KATOOV  JyOVIGUO
POVTOCIOKOV 0OANUATOV.

Mo vo e£eTdo0VE TV OTOTEAEGLOTIKOTNTO TOV HOVTEAWDV LOGC, TO SOKIUACOLLLE
oe tuyaiovg  OlayoViopovg NG mepwvoov  2016-2017  tov 10TOTOTOL
www.draftkings.com. Emiong ovykpivape t1g mpoPréyelg pog He LANPEGiES TOV
TPOGPEPOVTAL OO SLAPOPOVLS  10TOTOMOVS. To  OmMOTEAECUOTO. MTAV  OPKETA
evlappLVTIKA. ZTIG TEPIGGOTEPEG TEPUTTOCELS Ol TPOPAEYELS TOV HOVTEAOL pog Oa
KEPOLaV TOVG €KACTOTE OYOVIOHOVG Kol MTOV KOADTEPEG GLYKPITIKA UE TIG
TPOPAEYELS S10POPWV 1IGTOTOTTMOV.
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Abstract

Fantasy sport’s popularity is growing rapidly especially in United States of
America and Canada. Moreover with the emergence of sport analytics and sports data
related websites, it’s now easier than ever to find historical data for any
given sport or athlete. At the same time machine learning algorithms
and methods are accessible and usable by any user on an average
computer. This accessibility on data and technology can be combined
to create prediction models that can be used to estimate a player’s
performance and potentially give users a competitive advantage in
daily fantasy sports contests.

In this thesis we developed a machine learning model that predicts
fantasy performance of NBA players, based on their past performance.
We tried three different regression approaches, Bayesian Regression,
Linear Regression and Support Vector Regression. We also developed
an algorithm that uses dynamic programming to generate a daily
fantasy sports lineup based on our model’s predictions.

We ended up using Bayesian Regression for our model due to
better produced results compared to the other approaches. Next we
generated lineups for random contests of NBA 2016-2017 regular
season. We also compared our results with the predictions of websites
that offer similar services. Through our tests we managed to produce
several lineups that could potentially return profit in the long term and
at the very least offer a tool that can be used by daily fantasy players
to get an edge over their competition.

Keywords: <<Machine Learning, Daily Fantasy Sports, Regression>>
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Introduction

1.1 Data Analysis in Sports

The evolution of technology and the increased accessibility of the internet have lead data
analysis to become an integral part of professional sports. Data analysis in the current state of
the technology allows experts, to track every kind data imaginable and use it to analyze
games and players. As a result there is a constant increase in Professional teams’ prioritization
of statistics and data when making decisions. Nowadays every major professional sports team
has analytics department or analytical experts on their staff. Moreover sports fans show an
immense interest in analytical content. For example www.basketball-reference.com, a website

that collects historical basketball data, has almost four million unique visitors every month.

This rise in popularity of data analysis and statistics has made easier for researchers and
gamblers to use historical data in order to predict sports outcomes. In addition the increase of
computing power of the average computer allows users to develop and run their own
prediction models and use them in order to gain a competitive edge.

1.2 Fantasy Sports

Fantasy sports is a type of online game where participants assemble an imaginary team of real
athletes of a professional sport. These teams compete with each other based on the actual
statistical performance of the athletes. Participants form leagues consisting from five to
twenty people and lasts for twenty weeks. Scoring rules are set beforehand and can vary
based on participants experience and competitiveness of the league. Fantasy sports are really
popular in United States of America with around 56 million people playing them [1]. Almost
20% of adult men in U.S.A participate in a fantasy sports league and around 10% of adult
women.

Even before the internet, there were a few sports enthusiasts, playing fantasy sports using a
paper and a pencil, but the internet helped transform this hobby into a billion dollar industry.
There are 2 ways that people play fantasy sports. The more traditional one doesn’t involve
any gambling (or includes a small prize pool for the winner) and includes a league of usually
8-10 competitors who hold a “draft” before every NBA/MLB/NFL season. During this draft
the participants have a limited amount of virtual resources (usually a salary cap) available to



them. Using these resources, each competitor selects a virtual team, compromised of real
athletes. Fantasy competitors then face each other in heads-up games every week. The scoring
is dictated by the statistical in game performance (i.e. rebounds, touchdowns, steals, points,
etc.) of the athletes in their actual games. The challenge of fantasy sports is to maximize the
value of your resources, by selecting players who provide good statistical performance
relative to their price in the draft.

The daily format is a bit different from the traditional format. In daily fantasy sports people
compete with each other in tournaments that last only 1 day. In websites like DraftKings and
FanDuel, users draft a fantasy team in their sport of choice and pay an entry fee to submit that
team into a pool of other teams. Those websites offer contests which hundreds of people can
enter at the same time and potentially win from a multiple of their buy-in as a payout to
thousands of dollars.

1.2.1 Industry Background

During the year 2003 the Travel Channel on American cable television started airing World
Series of Poker inaugural season. World Series of Poker (WSOP) was a poker tournament
with a buy-in of 10,000 $ and 10 million dollars prize pool. Moreover the tournament gave
the chance to players to qualify for the main even by winning small online tournaments held
on platforms like PokerStars. The winner of WSOP first season was Christopher
“moneymaker” Bryan who qualified for the tournament by winning an online poker
tournament with an entry fee of 39$. He was an accountant and an amateur poker player and
won over 2.5 million dollars on the first season of WSOP. It was also the first live tournament
that he participated. His win caused a huge growth in online poker’s popularity around the
world. Online poker doubled its numbers every year during the 2003-2006 period. That period
is called “poker boom” [2].

That growth of the online poker industry came to an end at 13" of October 2006 when
American government signed The Unlawful Internet Gambling Enforcement Act (UIGEA).
This bill basically made the online poker websites illegal but at the same time contained
explicit language that legalized daily fantasy sports. Since online gambling was pretty popular
in the U.S.A and with online poker reaching its “golden age”, there was a huge gap in the
industry after the sign of UIGEA. That gap was filled successful with the introduction of
Daily Fantasy Sports, since people were playing fantasy sports for years, just in a different
format.

The first DFS website (Fantasy Sports Live) launched in 22 June 2007, followed by
SnapDraft of NBC 1 year later and Fanduel in January of 2009. In 2013 Travis “Tspieldo”
Spieth became the first DFS millionaire by winning 1 million dollars from a single contest.
After that DFS kept growing fast and today every major sports league in the U.S.A has a DFS
site as their official partner. DraftKings partnered with MLB, UFC and NHL and DraftDuel
with NBA. In 2016 the revenue for DFS websites was around 3.6 billion dollars with
DraftKing controlling more than 90% of the market. The market is projected to be at 4.8
billion dollars in 2020.

While daily fantasy sports have enjoyed explosive growth since 2013, the industry's origins
can be traced back more than a decade. The concept for DFS was discussed throughout the



2000's, with the first gaming sites being founded in 2007. Since that time, sites have raised
hundreds of millions of dollars in venture capital funding, while market leaders FanDuel and
DraftKings have developed official business relationships with the NBA, MLB, NHL, UFC
and dozens of professional sports franchises, as well as major corporations such as NBC and
Comcast.

1.2.2 Scoring and Format

As described above, in DFS the users have a set amount of virtual currency available, which
they use to draft real life players and enter a pool with other teams in order to compete for a
prize. The contests last 1 day and the same players can be drafted by multiply users. Users can
submit or modify their lineups until 5 minutes prior to the start of the first game of the day.

CREATE NEW LINEUP NBA Salary Cap - Points Feb 23 2015 6:30 PM EST

Please draft your players and then click the "Create New Lineup Card" bution below.
AVAILABLE PLAYERS LINEUP AVG. REM. / PLAYER: 50 REM. SALARY: 510(

All Games v

PG sG SF PF c G Kyle Lowry Tor@NO $7,000
James Harden Min@Hou $10,500

Anthony Davis o B Tor@No Trevor Ariza Min@Hou $5,700

Chris Paul Mem@LAC Tim Duncan B SA@Uta

Pau Gasol B Mil@Chi Mason Plumlee Bkn@Den

Blake Griffin Mem@LAC Khris Middleton Mil@Chi

DeAndre Jordan B Mem@LAC Danilo Gallinari B Bkn@Den

X X X X X X XX

Alex Len B Bos@Pho
"CLEAR " "IMPORT |

Ty Lawson B Bkn@Den
Zach Randolph Mem@LAC
Tyreke Evans Tor@NoO
Derrick Rose Mil@Chi

Jimmy Butler B Mil@Chi

§++++++++++

o R B

Image 1. DraftKings drafting interface.

In the image 1 we can see the interface of DraftKings when a user drafts his lineup for an
NBA contest. Except from the salary restriction there is also a restriction in the position of the
drafted players. So for example in DraftKings, users have to Draft one point guard, one
shooting guard, one small forward , one power forward, one center, one guard ( point guard
or shooting guard) and one forward (small or power forward). The last spot can be filled with
a player who is eligible for any position.



Point +1 Pt
Made 3pt Shot +0.5Pts
Rebound +1.25Pts
Assist +1.5Pts
Steal +2Pts
Block +2Pts
Turnover -0.5pts

Double-Double
+1.5Pts
{Max 1 Per Player: Points, Rebounds, Assists, Blocks, Steals}

Triple-Double
+3Pts
{Max 1 Per Player: Points, Rebounds, Assists, Blocks, Steals}

Image 2. Drafkings NBA scoring.

Image 2 shows the scoring format on DraftKings website. For every point a player of a user’s
drafted team scores, user gains 1 fantasy point, for every assist 1.5 fantasy points, for every
steal 2 fantasy points etc. After all games are finished, the fantasy points of the players that
were drafted are summed up. This sum is the line up’s total fantasy score.

The prize pool, entry fee and the number of participants vary for each contest. There are
tournaments with entry fees as low as 0.5 dollars and there are tournaments that require
thousands of dollars to enter. The final prize pool is determined by the entry fee. Usually the
website keeps 15% of the user’s entry fee and the rest goes to the prize pool.

Tournaments can have from ten to thousands of participants. A big player pool translates into
bigger prize for the winners, but at the same time smaller chance of placing on the top ranks.

1.2.3 Fantasy Contests

There are two different types of contests in daily fantasy sports: Cash games (also called
50/50 or double up) and Guaranteed Prize Pool (GPP).

e (Cash games are tournaments where the user competes for a chance to double his entry
money. The top 50% participants double their entry fee and the rest don’t win
anything. In a player pool consisted of 100 participants the prize will be the same for
the participant who finished first and the one who finished at 50" place.

e Guaranteed prize pool contests have a guaranteed prize which doesn’t dependent on
participant’s entry fee. The big differences with cash games are the scaling prizes and
the much smaller percentage of places which get paid. In GPP contests the first place
wins almost 15-20% of the prize pool and each place bellow wins a smaller amount.
The percentage of player pool that wins is usually around 20%.

Each type of contest requires a different strategy in order to succeed and have different
amount of luck and variance involved. Cash games tend to have less variance because of
bigger amount of participants getting paid. On the other hand GPP games require some
luck but at the same time a good placement results in high profit.



1.3 Project Goal

The goal of this thesis is to develop an algorithm that will provide a competitive advantage
over the average DFS player and translate this advantage into profit. Let’s assume that we
submit 10 different line ups, generated by our models, in 10 different 50/50 contests with an
entry fee of 58 per contest. For every contest we win we get 9.5$ back. Winning 6 out of 10
contests will translate into 7$ or 11.4% increase of our original capital. This means that
maintaining a 55% win rate will ensure profit in the long term.

To achieve that we used machine learning in order to predict players performance for each
game they will play. Next we created a lineup optimizer, which generates the optimal lineup
for a particular date based on our previous predictions.

We focused on NBA daily fantasy 50/50 or “cash” contests for www.draftking.com. We
chose NBA because basketball is considered a more predictable sport compared to other
popular sports like American football (NFL) and Baseball (MLB). The reason we chose to
emphasize on cash contest is that compared to regular tournament (GPP) games, cash games
have lower variable and a lot less luck involved in the final result. Although that doesn’t mean
that our predictions can’t be used for GPP games but the results are better and more consistent
on cash games. Moreover since every fantasy website has different scoring rules, we focused

on one website but the model could be used for other fantasy websites with a few tweaks on
the database.

To achieve our goal we collected statistical data from 2016-2017 season for each NBA player.
Using that data we developed a regression model in python. The model was tested on 2016-
2017 NBA season. To measure our success we set a target score of fantasy points that our
lineup should achieve in order to win a contest. Then we chose random dates of 2016-2017
season and generated a lineup based on our model’s predictions. Furthermore we compared
our model predictions with web applications that offer daily fantasy sports predictions to their
users.

1.3.1 Contribution

e We studied and researched various daily fantasy sports communities in order to find
which kind of data would be useful in a prediction model.

o  We tested different statistical categories and their impact on an NBA player’s fantasy
performance.

e We tested different regression models to find out which one can be used on daily
fantasy score predictions.

e We developed a machine learning algorithm which predicts the daily fantasy score of
an NBA player on a given date, based on the athlete’s past performance.

e We developed a python algorithm that generates the optimal line up for a given date,
based on our machine learning model’s prediction.



e  We evaluated our models and found out that we can maintain a positive winning rate
on draftkins NBA cash contests, which can translate into profit in the long term.



Related Works

There are many DFS players that use one of the many DFS sites available that offer
predictions for upcoming fantasy contests, such as https://www.fantasycruncher.com,
https://www.fantasypros.com , https://dailyfantasynerd.com,
https://www.rotogl.com/#0id=20119 1662. The most successful fantasy players develop their
own prediction models which they use in order to gain advantage over the rest of the players.
For example top fantasy player for 2015 Saahil Sud, has created his own prediction models

and techniques[3].Moreover it is hypothesized that the DFS sites using something similar in
order to define the price of the players in their DFS games. But due to the competitive nature
of the game the code of these models isn’t publicly available. As a result there wasn’t any
well documented work which we could study or base our model on.

Even though there are not prediction models available to the public, there is a plethora of
online communities which discuss daily fantasy sports. We used those communities to find
information about how each statistical category or any other parameter affects a player’s
fantasy performance. Some of those communities are:

e Reddit/DFSports: Reddit (www.reddit.com) is a social network platform designed to

allow users to share web content and discuss. Content is organized by areas of interest
called subreddits. There are over 1 million of subreddits. The subreddit DFSports
(www.reddit.com/DFSports) is an online community dedicated to discussions around
daily fantasy sports. It has 14 thousands of subscribers and even more readers. There
are daily discussions about strategies for daily fantasy sports and links to useful
resources.

e  RotoGrinders: Rotogrinders (www.rotogrinders.com) is a website with various
contest related to daily fantasy sports. Their contest includes strategy suggestions,
player’s analysis, player ranking, etc. They also provide a discussion forum where
users can exchange tips or discuss about strategies in upcoming contests.

e RotoWorld: Similar to Rotogrinders, Rotoworld (www.rotoworld.com) is a website
dedicated on daily fantasy sports. It has content that include fantasy guides, strategy
suggestions, daily analysis of upcoming contests and almost real time news about
injury status of players. They also provide a discussion forum.




Theoretical Background

3.1 Using machine Learning in DFS

The current state of the technology allows experts, to track every kind of data imaginable and
use it to analyze games and players. As a result, there are new kinds of statistical categories
created that can help measure and analyze players’ performance. In NBA for example,
advanced statistics like Player Efficiency Rating (PER), Win shares, Offensive/Defensive
Efficiency, Points per Possession were introduced trying to provide a better platform for
experts to analyze the game and also for coaches to measure their team’s performance and try
to improve it. But at the same time those stats can be used as a really helpful tool for
predictions.

Machine learning offers a great tool to use for developing prediction algorithms. With the
amount of data that is publicly available online, users can create datasets with up to date
statistics for each player and use regression algorithms to make predictions.

The average user of a DFS website uses the website’s predicted scores as their metric. The
relationship between player salaries and their predicted scores is close to linear. So if a
prediction model manages to beat those generic predictions that DFS websites provide, a
participant using this model can find undervalued players and get an edge on the average user.

3.2 Machine Learning

According to Arthur Samuel, machine learning gives "computers the ability to learn without
being explicitly programmed”. It’s basically the ability of machines (computers) to mimic
human behavior and improve their performance. Using machine learning a system’s
performance can be increased through examples and past data, which results on less time and
resources spent.

Machine learning is widely used to solve classification, clustering and regression problems
using different kinds of algorithms. Those algorithms can be grouped in two categories based
on their learning style:

e Semi-Supervised Learning: Traditional classifiers use only labeled data (feature /
label pairs) to train their model. However labeled instances are often difficult,



expensive or time consuming to obtain as they require the efforts of experienced
human annotators. Meanwhile unlabeled data may be relatively easy to collect, but
there has been few way to use them. Semi-supervised learning addresses this problem
by using large amount of unlabeled data, together with labeled data, to build better
classifiers [4].

e Supervised machine learning algorithms use externally supplied instances to produce
general hypotheses, which then make predictions about future instances. In other
words, the goal of supervised learning is to build a concise model of the distribution
of class labels in terms of predictor features. The resulting classifier is then used to
assign class labels to the testing instances where the values of the predictor features
are known, but the value of the class label is unknown [4]

Identification
» of required
data

'

Data pre-processing

A4

Definition of
training set

.

Algorithm
selection

Parameter tuning

E

Evaluation
with test set

No A,
\ ?

Image 4. The process of supervised learning [4].

Classifier

e Unsupervised learning: In unsupervised learning the input data is not labeled and
does not have a known result. The algorithm tries to classify the input data without
prior knowledge or category information. Unsupervised learning algorithms have
often been criticized for trying to solve a particular task in harder way than is
necessary [5].

Machine learning is employed in a range of computing tasks where designing and
programming explicit algorithms with good performance is difficult or infeasible; example
applications include email filtering, detection of network intruders or malicious insiders
working towards a data breach, optical character recognition learning to rank, and computer
vision. Applications for machine learning include :



e Adaptive websites

e Affective computing

e Information retrieval

e Natural language understanding and processing
e Search engines

e Online advertising

e Speech recognition

e Economics

o Financial market analysis

e Translation

3.3 Regression

The problem we had to solve was a regression problem. In statistics, regression analysis
includes any techniques for modeling and analyzing trends and relationships between a
dependent variable and one or more independent variables. It’s used to make predictions and
forecast future results based on known data. There are different machine learning algorithms
used to solve regression problems. Some of them are:

e Support Vector Regression (SVR)

e Ordinary Least Squares Regression (OLSR)

e Linear Regression

e Logistic Regression

e Stepwise Regression

e Multivariate Adaptive Regression Splines (MARS)
e Locally Estimated Scatterplot Smoothing (LOESS)

3.3.1 Linear Regression

Linear regression is a technique used to model a single response (outcome) variable based on
one or more input variables. With linear regression we assume that there is a linear
relationship between input and response variables[9].

Linear regression and regression models in general have two main objectives:

o Establish if there is a relationship between two variables. More specifically, establish
if there is a statistically significant relationship between the two. For example we can
establish if there is a statistical relationship between income and spending, wage and
gender, student height and exam scores, etc.



e Forecast new observations. This means that we can use what we know about a
relationship to forecast unobserved values. For example predict the sales over the
next quarter based on the recent growth of sales and the growth rate.

In regression models variables can play two different roles. They can be a dependent
variable or and independent variable. Dependent variable is the one that we want to
forecast or explain and its value depends on some other variable. We denote the
dependent variable as y. Independent variable is the variable that is used to explain or
predict the other one. Its value is independent and we denote it as X

Mathematically, we can write a linear relationship as:

Y=PBo+xBi+e

Where:
e y = the dependent variable or our target
e X is the independent variable
e [;is x’s slope or coefficient
e [ois the constant or intercept
e ¢is the error term

3.2.2 Support Verctor Machines (SVM)

Support Vector Machines (SVM) are supervised learning models used in machine learning
that analyze data for classification and regression analysis. The goal of SVM is to design a
hyperplane that classifies all training vectors into two classes, while the hyperplane leaves
maximum margin from both classes. Margin is the distance between the hyperplane and the
closest element from each class.



Image 5. SVM Example

In the image 5 we got two features x1 and x2, different elements to separate and also two
different hyperplanes. We want to classify the elements into class square or class circle. Z1
and Z2 are the distance between the hyperplane and the closest element to it. This distance is
called margin. Both hyperplanes classify the elements correctly but with SVM we want to
find the optimal solution, the hyperplane with the highest margin. In this case we can see
clearly that Z2 margin is bigger than Z1 which makes the green hyperplane the optimal
solution.

We can describe SVM with a simple classification problem of two linear seperatable classes
Co, C1. Assuming there is a separation function

gx) =wlix+w,
for which we got a vector w and a polarization w,, then:
avx € Cy

{< 0,
ey >0, avxXx€Cy
The total of elements X for which

gx)=0

define the separation surface. These are the elements we can’t classify in class Cy or in class
C;.



There isn’t a single solution for this problem since we can separate those elements with
infinite number of pairs w and wy. In order to find the optimal solution we need to define an
assessment criterion. In SVM we use margin y.

The method of Support Vector Classification can be extended to solve regression problems.
This method is called Support Vector Regression.

3.2.3 Random Forests

Random forests are an ensemble learning method of tree predictors where each tree depends
on the values of a vector sampled independently and with the same distribution for all trees in
the forest[8].

In order to achieve diversity among base decision trees, each tree is generated with the
following method: If the number of records in the training set is N, then N records are
sampled at random but with replacement, from the original data. This is a bootstrap sample.
This sample is used as a training set for growing the tree. If there are M input variables, a
number m << M is selected such that at each node, m variables are selected at random out
of M and the best split on these m attributes is used to split the node. The value of m
is held constant during forest growing. Each tree is grown to the largest extent possible.
There is no pruning. Using these steps, random forests method ensures that multiple trees
affect the forest. Once the forest is trained, random forests use all trees in order to classify a
new instance. When a tree classifies a new instance, the result is recorded as a vote. After the
new instance runs through all the trees in the forest, the votes are counted and the instance is
classified to the class with the most votes[7].

In a tree of classifiers { h ( x,0y), k=1, ....} the ® are independent identically distributed
random vectors and each tree casts a unit vote for the most popular class at input x.

Random forests for regression are formed by growing trees depending on a random vector ®
such that the tree predictor h(x, ®) takes on numerical values as opposed to class labels. The
output values are numerical and we assume that the training set is independently drawn from
the distribution of the random vector Y, X. The mean-squared generalization error for any
numerical predictor h(x) is:

Exy (Y-h(X))’

Random forests method can be an effective tool in prediction or classification due to the Law
of Large Numbers theorem which indicates that the average of the results obtained from a
large number of trials should be close to the expected value and will become closer as the
volume of trials increases. Random forests does exactly what this theorem describes, by
having multiply trees to vote for an instance and taking the result with the most votes as the
correct one. Moreover forests give results competitive with boosting and adaptive bagging
without changing the training set and they act to reduce bias.



3.3 Python

Python is a high level programming language. Python emphasize code readability and a
syntax which allows programmers to express concepts in fewer lines of code than might be
used in object oriented languages like Java or C++.

Python has a large standard library, commonly cited as Python’s greatest strengths, providing
tools suited to many tasks. Python’s main feature is its versatility, as its interpreters are
available for installation in many operating systems.

3.3.1 Scikit-learn

For this project we used scikit-learn. Scikit-learn is a Python module integrating a wide range
of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised
problems. This package focuses on bringing machine learning to non-specialists using a
general-purpose high-level language. Emphasis is put on ease of use, performance,
documentation, and API consistency. It has minimal dependencies and is distributed under the
simplified BSD license, encouraging its use in both academic and commercial settings.

Source code, binaries, and documentation can be downloaded from http://scikit-
learn.sourceforge.net.

Scikit-learn harnesses this rich environment to provide state-of-the-art implementations of
many well known machine learning algorithms, while maintaining an easy-to-use interface
tightly integrated with the Python language. This answers the growing need for statistical data
analysis by non-specialists in the software and web industries, as well as in fields outside of
computer-science, such as biology or physics. Scikit-learn differs from other machine
learning toolboxes in Python for various reasons: 1) it is distributed under the BSD license ii)
it incorporates compiled code for efficiency, unlike MDP (Zito et al., 2008) and pybrain
(Schaul et al., 2010), iii) it depends only on numpy and scipy to facilitate easy distribution,
unlike pymvpa (Hanke et al., 2009) that has optional dependencies such as R and shogun, and
iv) it focuses on imperative programming, unlike pybrain which uses a data-flow framework.
While the package is mostly written in Python, it incorporates the C++ libraries LibSVM
(Chang and Lin, 2001) and LibLinear (Fan et al., 2008) that provide reference
implementations of SVMs and generalized linear models with compatible licenses. Binary
packages are available on a rich set of platforms including Windows and any POSIX
platforms.

Furthermore, thanks to its liberal license, it has been widely distributed as part of major free
software distributions such as Ubuntu, Debian, Mandriva, NetBSD and Macports and in
commercial distributions such as the “Enthought Python Distribution”



Development

4.1 Creating the dataset

In order to create a model that predicts the fantasy points for each player, first we had to
create a dataset. The dataset had to be composed of the statistical values that constitute the
fantasy score. Fantasy score in daily fantasy basketball is a sum of points, rebounds, steals,
blocks, three points made and free throws. So the sum of the above real life statistics
accumulated by a player is the value that we are trying to predict.

To create the dataset we parsed data from www.DFSgold.com. For each NBA player we
collected the statistics we mentioned above for every game he played during the 2016-2017
NBA regular season. Next we created a CSV file for each player and put the data there as
seen in the image 6 below.

Rk G Date Age Tm Columni Opp GS MP FG FGA FG% 3p 3PA 3P% T FIA FT% ORB DRB L AST STL BLK TV PF p

1 10/28/201525-022 SAC LAC  Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla D
2 10/30/201525-024 SAC LAL Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive Ir
3 10/31/201525025 SAC @ LAC  Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla D
4 11/3/201525:028  SAC MEM Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla D
5 1 11/4/201525029 SAC @ PHO 0 331 0 0 0 0 0 0 0 1 1 1 0 0 0 0
6 11/6/201525:031  SAC HOU  Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla D
7 2 11/7/201525032  SAC GSW 1 145 1 1 1 0 0 1 2 05 0 3 3 2 0 1 1 0
8 3 11/9/201525034 SAC SAS 0 328 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
9 11/11/201525-036 SAC DET  Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla D
10 411/13/201525-038  SAC BRK 0 1910 1 2 05 0 0 1 2 05 0 1 1 0 2 0 1 0
11 511/15/201525-040 SAC TOR 0 1438 1 2 05 0 0 0 0 0 3 3 1 0 0 0 3
12 611/18/201525-043  SAC ATL 1 1557 0 0 0 0 0 0 0 1 1 1 0 1 1 3
18 711/19/201525-044  SAC MIA 0 5:21 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0

ORL  Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla D
CHO  Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla D

14 11/21/201525-046  SAC
16 11/23/201525-048  SAC

D D D D D

16 11/25/201525-050 SAC MIL  Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla D
17 811/27/201525052  SAC MIN 0 9:21 0 1 0 0 1 0 1 2 05 0 1 1 0 0 0 0 3
18 911/28/20152505 SAC @ GSW 0 15:08 4 7 0571 1 1 1 0 0 4 3 7 1 0 0 1 3
19 11/30/201525-055 SAC DAL  Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla D
20 10 12/3/201525-058  SAC BOS 0 6:47 1 - 0.25 0 0 0 0 1 0 1 0 1 0 0 0
21 11 12/5/201525060 SAC @ HOU 0 342 1 2 05 0 0 0 0 1 0 1 0 0 0 0 2

2 12/6/201525061 SAC @ OKC  Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla D
2 12/8/201525-063  SAC UTA  Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla D
24 12/10/201525:065 SAC NYK  Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla Did Not Pla D
25 1212/15/201525070  SAC HOU 0 0:55 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

>



Image 6. Quincy Acy’s statistics for 2015-2016 season

Except of the 6 statistical categories that we used in daily fantasy basketball scoring, our first
dataset contained some more data, like date, age of the player, opponent, minutes played, etc.
Some of that data was used in the final excel files (like minutes played) and some like Age
and 3PT% was not included. Since there is no documentation of similar work we couldn’t
predetermine which data would be useful for our model. Due to the lack of available
information on algorithms and models that other fantasy players use, there was no way to
know the impact of each statistical category on the final prediction. In order to determine
which data would have positive impact in our predictions we used the trial and error method.
We run our prediction model with different datasets and evaluated the success of the model
after each run.

The statistical categories we ended up using were minutes played, points, field goals made,
rebounds, assists, steals, turnovers, fouls and projected minutes. For every NBA player there
was a CSV file with those statistical categories and the date of the game.

After trying different statistical categories we found out that minutes played was the statistical
category that had the most impact in model’s predictions. We run a lot of different tests with a
variety of statistical categories, while not including minutes played. In every run the results
were extremely inaccurate and the predictions seemed completely random. Only when we
included minutes played as a feature, predictions started to be accurate.

4.2 Predicted minutes

As we mentioned above, minutes played was the statistical category that had the most impact
in our predictions. But there isn’t any way to be able to know how many minutes a player is
going to play before the game starts. As a result we had to find a way to create a good
estimation of the minutes a player is going to play on his next game.

The majority of NBA teams have some kind of fixed rotations during the regular season.
There are players that are considered core which are usually 6-8 depending on the depth of
the team and there are players called “bench warmers” who only play when the result of the
game is already decided. Those core players are the players that usually score the most
fantasy points. So those are the players whose minutes we want to predict.

Assuming that a player is available to play and he is not injured, or not excluded from the
team’s line up in order to get some rest, there are 4 factors that affect core players minutes
during a game: injury, foul trouble, overtime and the “blowout” factor.

o “Blowout”: Blowout is a term that is used to describe an easy one-sided victory. It
occurs when one athletic team or individual performer outscores another by a large
margin, in such fashion that allows the second team or individual little chance of a
victory from a point early in a competition, game, contest or event. For example at
December 26 2015 Cleveland cavaliers were playing against Portland Trailblazzers.
LeBron James, Cleveland Cavalier’s best player who was averaging 39.09 minutes
per game in the last 5 games, was on the floor for only 25.19 minutes. He also scored
only 23 fantasy points while he was averaging 46 in his last 5 games. The reason was
that the Trailblazzers were winning by 20 points after the first period and they kept



their lead for the rest of the game ending up winning by 29 points (105-76). Jared
Cunningham, a bench warmer of Cavalier’s was the one who benefited the most from
this blowout situation. He did not play a single minute in the last two games and in
the next game but in this game he was on the floor for 12 minutes. He also played
less than 2 minutes in the next 4 of 6 Cavalier’s games. But even though he played 12
minutes, he scored only 11 fantasy points. This example helps to understand that
blowouts can cause a significant drop in a core player’s fantasy value but at the same
time the improvement on bench warmers is not that significant to make them worth
including in a lineup.

e Injuries: Injuries are and will always be a part of a competitive athletic event. If an
NBA player gets injured before the game starts, teams make public announcements
and fantasy players can exclude this player from any lineup they will potentially
submit. But an in game injury can occur, even early in a game and sadly there is no
way to predict that.

e Foul Trouble: Foul trouble is a phrase used in basketball to describe a player’s high
foul total. In NBA players are allowed up to 6 fouls per game. After they exceed that
they are forbidden to participate for the rest of the game. NBA coaches usually will
put a player on the bench when he commits too many fouls early in the game (2 or
more in first quarter, 3 or more in second quarter, etc). This obviously can cause a
drop on player’s minutes and consequently in the fantasy points that they will score.
Even though there are some patterns that can be used to determine whether a player is
on risk of getting in foul trouble, like which team they face, which position they play
(Centers tend to get in foul trouble easier), we ignored this factor in our predictions.

e The last factor, overtime, is also completely unpredictable. Overtime or extra time is
an additional period of play specified under the rules of a sport to bring a game to a
decision and avoid declaring the match a tie or draw where the scores are the same.

So in order to predict the minutes an athlete would play we focused on blowout factor. To
predict weather or not a game could go to “blowout” resulting in les minutes played for the
core players, we used betting lines. The spread, or line, is a number assigned by the
bookmakers which handicaps one team and favors another when two teams play each other
and one is perceived as being more likely to win. The favorite "takes" points from the final
score and the underdog "gives" points. For example if team A which is ranked 1 on the NBA
standings table plays a home game versus team B which is ranked 30, the betting line could
be something similar to +15 for team A. This means that if somebody bets on team A to win,
team A needs to win by more than 15 points. Similarly, betting on team B to win would be
successful if team B doesn’t lose by more than 15 points.

We downloaded all betting lines from www.covers.com for 2015-2016 NBA regular season.
Then we got the average minutes played of NBA players from last 3 games and adjusted them
based on the betting lines. If the betting line for one game was equal or lower than +5 then
minutes stayed the same. If the betting line was at 5.5 [ multiplied player’s minutes by 96%.

For example if a player averaged 40 minutes per game in his last 3 games and the betting line
for his next game was +5.5, his new projected minutes are 38.8. For every additional +1 in the
betting line I lowered the multiplier by 1. It can be explained better with pseudo code:



If betting line < 5

Projected player minutes for the next game = average minutes in the last 3 games
Else If betting line > 5

Projected player minutes for the next game = average minutes in the last 3 games
Else if betting line = 5.5 or 6

Projected player minutes for next game = average minutes in the last 3 games *96%
Else if betting line = 6.6 or 6.5

Projected player minutes for next game = average minutes in the last 3 games *95%
Else if betting line =7 or 7.5

Projected player minutes for next game = average minutes in the last 3 games *94%

etc.

4.3 Developing a prediction model

After constructing the dataset we started creating the prediction model. The model would start
predicting after the fifth game of the season. The reason behind that is the lack of relevant
data at the first games of an NBA season. When an NBA season starts, teams might have an
entirely different roster compared to last season, new coach, new playbooks, etc. Moreover
the time period between the last NBA regular season game and the first game of the next
season is around 6 months. In those 6 months players can develop new skills and improve or
decline due to age. All of the above make it impossible to predict accurately enough a
player’s performance of the first games of the season based on last year’s performance.

We used two different players, LeBron James and Aaron Gordon and we tried the following
regression models on them in order to find the one that generates the best results:

L]

Linear Regression: Linear regression model performed decent on training and testing
dataset. But when used on unseen data, it didn’t produce optimal results.

e SVR with polynomial and RBF kernel: SVR’s prediction was always the same
number for training set and validation set. Both kernels generated a number and used
it as prediction for any kind of data they were asked to predict.

e Random Forest Regression: Random forest regression was the method that produced
the best results compared to the others, both in training and validation data. We ended
up using the Random Forest method for our model.



e Bayesian Regression: Bayesian ridge regression was the method which produced the
second best results. The results were acceptable but not as good as those produced by
Random Forest Regression.

Starting our code, the first step was to create the dataset. We created a loop that reads every
CSV file from a directory and read them 1 by 1.

path ="C:\\CSVlist\\"
filenames = glob.glob(path + "/*.csv")
for infile in glob.glob( os.path.join(path, *csv') ):

Then using pandas, we read the CSV file and created a data frame with it. Our dataframe had
ten columns: Date (date that the game was played), Rebounds, PTS (number of points that the
athlete scored in that game), Assists, Steals, Blocks, DFS (the daily fantasy score), MP (the
minutes the athlete played) and Salary (the fantasy cost of the athlete).

Next we defined the features and the target. The features consisted of Rebounds, Steals,
Assists, Blocks, MP and PTS columns and the target was the DFS. So we excluded the first
six games of the season and started predicting from the seventh. The code for defining our
features includes a for loop that makes sure the model doesn’t “cheat” by reading the statistics
of the player on the date it’s predicting. This loop concatenates the statistical values ( PTS,
FG, FGM, etc) from 6 games before the game that the model predicts and defines them as
features. The code for this is the following:

forecast _col ='DFS'
df333['label'] = dff forecast col]
data = np.array(df333.drop(['Date','Position',’DFS’],1))
X = np.empty( [len(data)-6,6*len(data[0])] )
for i in range(0, len(data)-6):
if 1 > len(data) - 1:

break

result = np.array(data[i])
for j in range(1,6):

result = np.concatenate((result,data[i+j]))
X[i] = result

y=labels[6:]



We also excluded 1 single game which was going to be used for validation and also for our
test runs. User can set a date which won’t be used for training or testing and later predict the
outcome of this date based on model’s training:

dfval=df.loc[:30917].tail(7)
dfval= df[df.index !=3917]

Given the value 30917 for dfval, the game for 9" of March 2017, will be excluded from
training and testing dataset.

After splitting our data, we performed cross validation. We used the following parameters in
order to find out which would return the best results:

e N estimators: 15 to 350

e Max features: 3 to 50

e Max depth: 10 to 60

e  Minimum sample split: 2 to 40
e Bootstrap: True or False

The parameters we ended up using after performing cross validations are the following:

e N estimators: 50

e  Minimum sample split: 2
e Max features: 7

e Max depth: 22

We used those parameters for every player during our tests. Ideally we would run cross
validation again before we predict a player’s fantasy score. But cross validation required
nearly 10 hours to test every parameter, even on a computer with latest generation CPU, for
just one player. Moreover sklearn doesn’t provide the option to use GPU in order to increase
processing time.

After completing the training of our model we tested it on validation data. We create a new
dataframe which contained the game from the date we set before as dfval and the 6 dates
before that particular date. We set our features and target the same way as before and we
predict our new unseen data.

Having our predictions ready we wrote the results in a CSV file along with player’s name,
position and salary. This CSV file will be used later for our optimizer in order to generate a
lineup.

dffinal=dfnew[(dfnew['Date']== 30917)]

dffinal.reset index(drop=True, inplace=True)
dffinal2=dffinal.drop(['Date',"PTS","RB",'Assist','BIk’','Steals','DFS','MP",'label'], 1)
dffinal2['filename'] = [df123]

dffinal3=pd.concat([dffinal2,ss],ignore _index=True,axis=1)



dffinal3.columns=['Position','Salary’,'Name','Pred']
dffinal3['Pred'] = dffinal3['Pred'].apply(lambda x: round(x,1))
dffinal3 = dffinal3[['Name','Position','Salary’,'Pred']]
dffinal3.to_csv('dffinal';mode="a',index=False, header=None)

Image 7 shows the form of our final CSV file

Al-Farouq Aminu ,SF,5700,25.7,0
Alex Abrines ,5G,3000,12.5,0
Alex Len ,C,4100,15.6,0

Allen Crabbe ,S5G,3900,13.7,0
Andre Drummond ,C,6800,42.6,0
Andre Roberson ,SF,3500,21.1,0
Andrew Harrison ,PG,3500,9.2,0
Aron Baynes ,C,3500,12.3,0
Austin Rivers ,S5G,3500,19.6,0
Blake Griffin ,PF,8100,47.2,0
Brandan Wright ,PF,3000,14.4,0
Brandon Bass ,PF,3000,6.5,0
Brandon Ingram ,SF,b4900,22.7,0
Channing Frye ,C,3700,18.4,0
Chris Paul ,PG,8000,46.8,0

Corey Brewer ,SF,3000,10.7,0
D'Angelo Russell ,PG,7100,29.1,0
Danny Green ,S5G,3600,15.6,0
David Lee ,PF,3700,17.4,0

Davis Bertans ,PF,3000,8.9,0

21 DeAndre Jordan ,C,6200,39.5,0

22 Dejounte Murray ,PG,3500,7.0,0
23 Deron Williams ,PG,3900,13.3,0
24 Derrick Jones Jr. ,SF,3000,7.5,0
25 Derrick Williams ,PF,3800,12.8,0
26 Devin Booker ,S5G,6600,30.4,0

27 Dewayne Dedmon ,C,3700,22.0,0
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Image 7. Produced CSV file

5.3 Lineup Optimization

Predicting the fantasy score of the players through a machine learning model was the main
focus of this thesis. But in order to test our predictions in actual daily fantasy contests, we had
to choose 8 players which would constitute our lineup. For this purpose we developed an
algorithm which based on our predictions, creates the best possible combination of 8 players
for any given contest.

Any lineup that is submitted in a draftkings contest has to fulfill the following constrains:

e The lineup has to include at least 1 player who is eligible for PG (Point Guard)
position.



e The lineup has to include at least 1 player who is eligible for SG (Shooting Guard)
position.

e The lineup has to include at least 1 player who is eligible for SF (Small Forward)
position.

e The lineup has to include at least 1 player who is eligible for PF (Power Forward)
position.

e The lineup has to include at least 1 player who is eligible for C (Center) position.

e The lineup has to include at least 1 player who is eligible for F (Forward) position.

e The lineup has to include at least 1 player who is eligible for G (Guard) position.

e The total amount of salary for each lineup has to be below 80.000.000 $

So our algorithm had to maximize the value of our lineups (fantasy points) while taking into
account these constrains.

The input data for our algorithm are all the NBA players available for selection in the current
date. We place the athletes into a set called A. Then we divide the set to multiple sets based
on the athlete’s position. All NBA players who are eligible for Point Guard position are
members of subset P, all shooting guard are members of subset S, all small forwards are
members of subset M, all power forwards are members of subset P and all centers are
members of the subset C. At the same time all shootings guards and point guards are members
of the subset G and all small forwards and power forwards are members of the subset F. We
can describe the input data better like this:

A = {al,....,an}, which is the set of all NBA players available
NcA
ScA
McA
PcA
CcA
GcPS
FcM,P
Si = the salary of the athlete Vi € A
pi= the predicted fantasy points Vi e A

Every NBA player available has also a binary decision variable which represents whether or
not the player is selected for the lineup. The variable xi is equal to 1 if the player is selected
and equal to 0 if the player is not selected.

¥i= {1 if the player is selected for the fantasy team

Vi eA
0 otherwise



Mathematically the above problem can be described like this:

Maximize Zi c A MiXj

Subject o
Zien Xi=1
ies Xi =1
iem Xi =1
Ziep Xi =1
Ziec Xi=1
Zieg Xi=1
Zier Xi=1

Zi e N USUMUPUCUGUF Xi= 7
Zi c R Xi Si <80.000

X;€ {0,1}n forall1€ A



Evaluation

To evaluate the results of the prediction model we took into consideration the following:

The goal of this model isn’t to achieve 100% accuracy on predictions. That would be nearly
impossible. The goal is to create predictions which when used, can generate lineups that will
return a profit in the long term. There are 3 important things that make a prediction model for
DFS sports successful:

Spotting undervalued players: As we mentioned in chapter 1, in DFS users have a certain
amount of resources to spend in order to create a lineup. Every athlete has a different value
which depends on his average fantasy performance. Finding players who can score more than
their salary value, it’s crucial for a lineup’s success. For example if player A costs 7,000$ and
scores 35 fantasy points and player B costs 3,500$ and scores 30 fantasy points, player B is
considered a value pick. Spotting those low cost players who can score more fantasy points
than they are expected to its crucial for a line up’s success.

Ability to spot extraordinary performance: It is really important for a lineup to include
undervalued players who will score higher than expected. But at the same time including an
expensive player who will score an extremely high fantasy score can be eough to guarantee a
win.

We also mentioned before that our focus will be on cash games and not on GPP games.

5.1 Assessment parameters

To evaluate the model, we tested it on random dates of 2016-2017 NBA season and compared
the predictions with the actual results. With a bit of research in online fantasy communities
we can see that a score above 280 will almost always ensure a win
(https://rotogrinders.com/threads/average-fanduel-nba-scores-required-to-cash-in-h2h-or-
183106,
https://www.reddit.com/r/dfsports/comments/208i68/what _score should you typically aim_
for_in ). Of course that can vary from day to day. In certain contests, the score to actually win




in cash games could be higher. But still a score on the range we mentioned is a good indicator
of whether a lineup will be successful.
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Image 8. Fantasy score required to win a Draft kings cash game in the span of 60 days

Image 6 illustrates the fantasy scored required to win a Draft kings cash game in the span of
60 days. Out of 60 days there were only 4 instances that a lineup of 300 fantasy score
wouldn’t translate into profit and a total of 16 instances where a 280 fantasy score wasn’t
enough. This means that if our model generated lineups that can hit our target score (280) we
would win 44 out of 60 contests. Calculating the actual profits, $100 double up contests have
an entry fee of 100$ and a prize of 185$ for the top 50% participants. In order to enter 60
different contests in the span of 60 days we would need 6,000 $. By winning 44 of them we
would have 8,140$ by the end of the 60" day, which is 2,140$ profit on our original
investment.

We also compared our results with projections and lineups from www.fantasy-cruncher.com.
Fantasy cruncher is a website which provides projections for daily fantasy sports and also a

line up optimization software. They charge 49.95 USD per month. Even though predictions
are not fantasy cruncher’s main feature, the comparison with our model can help us draw
useful conclusions.

5.2 Tests

The first date we tested was 2™ of March 2017. There were 3 different games available, 6
teams and a total of 68 players. We run our prediction model on those players and gathered
the results in a CSV file with the following format:



Al-Farouq Aminu ,SF,5700,25.7,0
Alex Abrines ,SG,3000,12.5,0
Alex Len ,C,4100,15.6,0

Each line of the CSV contained the name of the player, his position, his DraftKings salary and
his projected fantasy points. The zero after the last comma indicates whether a player is going
to be included in the lineup. If the value after that last comma is -1 the player will be excluded
from the projected lineup and if its 1 the optimizer will be forced to include that player.

Next we run the CSV through our lineup optimizer, getting the following results:

2/3/2017
Player Name Predicted Score Actual Score
Stephen Curry 51,60 47.00
Westbrook 73.80 66.00
Nurkic 35,70 55,00
Harkless 26,50 23,75
Zeller 2450 24.00
Gibson 20,80 33,00
Crabbe 19.30 14,75
Kidd-Gilchrist 24,10 29,00
Total 276 2903

Image 9. Generated lineup for 2/3/2017

Our model predicted a fantasy score of 276 and our line up actually scored 293 fantasy points.
With our first test we managed to reach our target of 280 fantasy points. Our model managed
to predict the extraordinary fantasy performance of Russell Westbrook despite predicting that
he will score 7.8 more fantasy points. On Cody Zeller our model had almost 100% accuracy,
miscalculating his performance by only 0.5 fantasy points. On Nurkic’s case, the 20 fantasy
points difference between his actual score and our predicted fantasy score, didn’t affect our
final results. Due to his low salary (5600), a fantasy score of 35.7 points was enough for our
optimizer to include him in the generated lineup.

The next date we used for testing was 7" of March 2017. There were again 3 games available,
6 teams and a total of 68 players.



7/3/2017

Player Name Predicted Score Actual Score
Oladipo 30,5 23,75
Chriss 25,6 19,75
Westbrook 63,1 82,75
Bledsoe 42,9 40,25
Randle 30,9 55,5
Robertson 22,3 16,5
Clarkson 26,1 26
Jason Smith 17,1 28
Total 259 2025

Image 10. Generated lineup for 7/3/2017

Running our model and our optimizer we got the above lineup with a predicted score for 259
fantasy points and an actual score for 292.5 fantasy points. Same as our last test, we managed
to reach our goal of 280 fantasy points despite the prediction accuracy being low.

Our model had the most success with Clarkson’s prediction, missing his actual score by only
0.1 fantasy points. It appears that our model undervalued Randle’s and Russell Westbrook’s
fantasy performance but at the same time the predictions were high enough to indicate that
they are worth including in a lineup.

Our next testing date was 13" of March 2017. This time there were 8 NBA games available,
with 16 teams and 192 players.

13/3/2017
Player Name Predicted Score Actual Score
Marc Gasol 41,8 35,75
wall 55,2 37,5
Bjelica 29,1 35,5
Millsap 40,5 29,25
Schroder 33,4 a4
Wade 26,8 37,25
Kidd-Gilchrist 28,6 31
Bazemore 23 21
Total 278 271

Image 11. Generated lineup for 13/3/2017
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Image 12. Fantasy Cruncher’s lineup for 13/3/2017

This time even though the total fantasy score of our lineup was only 7 fantasy points lower
than the fantasy score our model predicted, we didn’t manage to reach our goal of 280 fantasy
points. Wall’s difference between his predicted and actual score is the most noticeable.
Looking at Wall’s last 6 games, he averaged 54.13 fantasy points per game which can explain
our model’s prediction. He also averaged 48.8 fantasy points in his next 8§ games.

Paul Millsap scored only 29.25 fantasy points, 11 less compared to our model’s prediction,
despite playing for 40 minutes. At the same time he scored over 37 fantasy points in his last 8
games, playing below 40 minutes in all of them.

Image 12 shows fantasy cruncher’s lineup for that particular date. In comparison with our
lineup, fantasy cruncher’s lineup scored 5 points lower but the difference in their prediction
score and actual score was a lot higher.

For our next date, 31th of March 2017, there were 8 NBA games, with 16 teams and 192
players available.



31/3/2017

Player Name Predicted Score Actual Score
Aaron Gordon 32,7 62,5
George 48,1 46,25
Mason Plumlee 29,9 8
Harden 67,7 45,5
Smart 27,1 22,5
Temple 21,2 19,25
Payton 42,9 50,25
Lee 21 23
Total 291 277

Image 13. Generated lineup for 31/3/2017

Our model’s performance wasn’t good enough to reach our target fantasy score. There was a
significant difference between the predicted score and actual score (14 fantasy points).
Moreover the inaccurate predictions of Mason Plumlee’s and James Harden’s performance
resulted in inefficient use of our available salary. Even Aaron Gordon’s 62.5 fantasy points
for only 5,400$ wasn’t enough for our lineup to reach our target score.

Our 5™ test date was April 1 2017, with 5 NBA games, 10 teams and 120 players available.

1/4/2017
Player Name Predicted Score Actual Score
Payton 41,4 56,25
Len 26,8 24,25
Rubio 40,6 42,5
Randle 33,8 26,5
Kilpatrick 23,9 26,25
Butler 47,7 53,25
Booker 23,6 47,75
Clarkson 30 12
Total 267,8 288.8

Image 14. Generated lineup for 1/4/2017
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Image 15. Fantasy Cruncher’s lineup for 1/4/2017

As we can see in the image above, our lineup reached our target of 280 fantasy points. Once
again the total actual score was significantly higher than the predicted score, mainly because
of the inaccurate prediction on Jordan Clarkson’s and Elfrid Payton’s performance. For 5 out
of 8 players the difference between the actual score and the predicted score was below 5
fantasy points, which can be considered quite successful.

Comparing our prediction to fantasy cruncher’s predictions, our lineup again had a better
actual score while fantasy cruncher’s lineup didn’t even reach the target of 280 fantasy points.

Until now we tested our model in the late stages of NBA 2016-2017 regular season. This
means that our model had more than 50 games to use for training and testing. For the next two
tests we used dates from December of 2016, so our model had only around 20 games
available for training and testing.



6/12/2016

Player Name Predicted Score Actual Score
Wwall 48,3 75,5
Butler 46,1 46
Gobert 38,2 43,7
Lavine 33,9 32,5
Dudley 20,5 23,7
Ish Smith 29,6 28,25
Devin Booker 32,5 25,5
Wiggins 32,3 18,25
Total 281 203

Image 17. Generated lineup for 6/12/2016

In this test, for 6/12/2016, we reached our target of 280 fantasy points and the difference
between the total actual score and the predicted score of our lineup was 12 fantasy points. The
most noticeable results are John Wall’s and Andrew Wiggin’s predictions. In the first case
John Wall scored 75.5 fantasy points with a prediction of 48.3 fantasy points. Once again, the
lower than actual score prediction on John Wall’s fantasy points, wasn’t enough to hurt our
results. On the other hand the salary spent on Andrew Wiggins could be used more efficient
on some other player considering that his salary cost was 6,0008. For the rest of the players
the results could be considered adequately based on the fact that the difference between the
predicted and the actual fantasy score was lower than 5 fantasy points in 5 of the total 8
players.

In the next 2 tests our lineup reached our target score in one case with 287.5 fantasy points
and only scored 270 fantasy points in the other. The results can be seen in images 18 and 19.

19/12/2016
Player Name Predicted Score Actual Score
Wilson Chandler 36 32,5
Taj Gibson 26,5 24,5
Gortat 32 38,75
Westbrook 67,9 73,25
Markieff Morris 27,4 18
Bledsoe 39,8 40,75
Butler 43,3 36,25
Murray 18,2 6
Total 201 270

Image 18. Generated lineup for 19/12/2016



14/2/2016

Player Name Predicted Score Actual Score
Lou Williams 34,1 45,25
Andrew Wiggins 36,1 51,75
Tristan Thompson 30,3 29,75
James 57,1 55,5
Rubio 33,5 41
Clarkson 22,5 23,25
Russel 30,2 14,5
Larry Nance Jr. 19,3 26,5
Total 263 288

Image 19. Generated lineup for 14/2/2016

5.3 Testing with manual tweaks

In daily fantasy sports players have the option to modify their submitted lineups until 5
minutes before the first NBA game starts. This allows for last minutes tweaks based on news
about player’s availability, injury, etc.

When a starter NBA player is unavailable for a game, there is a significant amount of minutes
that will be allocated to the rest of the team. This means that there will always be a player
who will see a significant increase in his minutes and in most cases to his fantasy
performance. When we generate a lineup using our model we can exclude an injured or
unavailable player. But at the same time our model doesn’t change the predicted score on the
player that will take the injured player’s place and minutes. To compensate that we can study
some statistics like a team’s statistics when X player is missing, to draw useful conclusions
about possible increase or decrease on the fantasy performance of the rest of the team. Based
on those statistics, we can extract information about specific players who will potentially
benefit from X player’s absence and “force” the optimizer to include that player in the
generated lineup.

For the next tests we generated 2 lineups for each date. In the first lineup we let the optimizer
choose the optimal lineup based on our model’s predictions similar to the previous tests. For
the second lineup we checked injured or rested players whose absence was reported before
the contests started. Then we checked the statistics of the rest of the team while that player is
not playing. If there was a player who benefited statistically from the injured player’s
absence, we forced our optimizer to include him in the lineup.

We tested our model at 23™ of January 2017. For that date Kawhi Leonard, Chris Paul and
Blake Griffin weren’t available due to injury or rest as reported by rotoworld.com.



Player News
Date: |01/23/2017 go

@& Kawhi Leonard - GIF - Spurs

Kawhi Leonard (hand, Nets) will not play on Monday vs. the Nets.

He's resting for "precautionary” reasons against the worstteam in the NBA, so
Leonard’'s owners can expect to have him back for Tuesday's game vs. the
Raptors. With Leonard out, expect to see a lot of Jonathon Simmons and Kyle
Anderson at the three.

Source: Jeff McDonald on Twitter 23-6:33PM

Player News

Date: 01/23/2017 go

Blake Griffin - F - Clippers

Blake Griffin (knee) will "most likely” play on Tuesday vs. the 76ers according to
coach Doc Rivers.

In case you missed it, Griffin has already been ruled out for Monday's game vs.
the Hawks. Griffin is feeling great and Rivers said a couple weeks ago that he
doesntwantthe All-Star PF to be limited upon his return, so he could hit the
ground running. If he plays on Tuesday, that means he should also be good for
Saturday's showdown vs. the Warriors. Luc Mbah a Moute, Austin Rivers,
Marreese Speights and Brandon Bass will all take a hit with this report.

Source: Kevin Arnovitz on Twitter Jan 23 -6:12 PM

' Chris Paul - G - Rockets

Chris Paul underwent successful surgery on Wednesday to repair a torn
ligamentin his left thumb, and he's expected to miss the next 6-8 weeks of
action.

This timetable puts CP3 back on the court right around the fantasy playoffs, butin
the meantime itll be Raymond Felton and Austin Rivers running the pointin Los
Angeles. Blake Griffin (knee) isn't expected to get back for at least another 1-2
weeks, so Jamal Crawford could be looked to more often on offense. If you're in
a standard league and struggling in the standings without an IR-spot, selling
CP3 for pennies or outright cutting him may be the only course of action here.
Related: Jamal Crawford, Raymond Felton, Austin Rivers

Source: Brad Turner on Twitter Jan 18 - 2:08 PM

Image 20. www.rotoworld.com Injury Reports for 23 January 2017

In the image 21 we can see San Antonio Spur’s statistics when Kawhi Leonard isn’t playing.



Player Impact (2]

Salary

e(PF) PF/C $7,000 32.0 345 +7.9%

& Pau Gasol (C C $5700 28.1 248 -11.8% 25 22 -13.4%
& Partty Mills (PG PG  $5400 189 238 +258% 23 22  -2.7%
& Jonathon Simmons (SG) SG/SF $4,600 12.5 20.8 +66.0% 18 27 +53.8%
& Danny Green (SG SG  $4400 17.0 213 +254% 26 29 +13.1%
& Dejounte Murray (PG) PG $3,500 9.2 121 +31.2% 11 13 +21.7%
& Manu Ginobili (SG) SG  $3400 16.1 269 +67.0% 19 21 +10.6%
& Kyle Anderson (SF PG/SF $2,900 9.8 266 +170.0% 13 30 +126.8%
& David Lee (PF) PF/C  $2500 16.0 255 +59.3% 18 23 +23.0%
& Dewayne Dedmon(C) C $2,400 14.6 182 +245% 15 19 +20.3%
& Bryn Forbes (PG) PG  $2000 53 168 +2186% 10 20 +91.7%
& Davis Bertans (SF PF $2000 83 187 +1245% 12 18 +55.8%

Image21.San Antonio Spurs statistics when Kawhi Leonard isn’t playing

We notice that Kyle Anderson has a significant increase in his fantasy points, plays the same
position as Kawhi Leonard and at the same time his salary is quite low. That can potentially
qualify him as an undervalued player by DraftKings. Kyle Anderson 2.900$ salary reflects his
performance when Kawhi Leonard is available for the Sun Antonio Spurts.

In the image 21 and we can see Los Angeles Clippers’ statistics when Blake Griffin and Chris
Paul are not not playing.



layer Impact ©

Salary
&+ DeAndre Jordan (C $7,400 36.7 35.2 -4.1%
& L g e (SF) SF $4300 13.0 123 5.2%
&+ J.). Redick (SG SG $4100 21.7 214 -1.5%
&+ Austin Rivers (PG PG/SG $4000 17.8 26.6 +50.0%

&+ Jamal Crawford (SG SG $3900 17.5 27.0 +54.5%
&+ Marreese Speights (PF) PF/C  $3,700 16.6 18.1 +8.8%
&+ Raymond Felton (SG PG $2,500 12.1 |25.5 +109.5%

&+ Paul Pierce (SF SF/PF $2100 7.0 7.8 +11.9%

Image 22. Los Angeles Clippers statistics when Chris Paul isn’t playing

Avg Fpts Avg Mins

$10,200 42.5 48.1 +13.2%

&+ DeAndre Jordan (C a $7400 35.0 39.7 +13.6% 32 34 +6.2%
&+ Luc Mbah a Moute (SF) SF $4300 11.7 154 +31.2% 22 25 +11.8%
&+ ).). Redick (SG SG $4100 21.0 233 +11.2% 28 30 +7.2%
&+ Austin Rivers (PG PG/SG $4,000 185 241 +304% 26 31 +19.1%
&+ Jamal Crawford (SG SG $3,900 195 205 +48% 26 28 +9.0%
&+ Marreese Speights (PF) PF/C $3,700 15.6 20.3 +29.5% 15 17 +18.7%
&+ Raymond Felton (SG PG $2,500 13.1 '21.3 +62.0% 19 26 +39.5%
&+ Paul Pierce (SF) SF/PF  $2100 6.3 83 +32.5% 9 16 +72.8%

Image 23. Los Angeles Clippers statistics when Blake Griffin isn’t playing

We notice that Austin Rivers and Jamal Crawford have the highest increase in fantasy points,
play the same position as Chris Paul and at the same time their salary is quite low In relation
to their average fantasy points.

While testing our model for 23 January 2017 we used the above information and we forced
our optimizer to include a particular player.



Player Name

23/1/2017
Predicted Score Actual Score

Austin Rivers 22,8 41,5
Kyle Anderson 7,9 28,75
Markieff Morris 37 36
James 55,5 62,5
Monroe 33,2 37,5
wall 47,4 39
Teague 43,1 21,5
Robertson 20 24,75
Total 267 202

Image 24. Generated lineup for 23/1/2017
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Image 25. Fantasy Cruncher’s lineup for 23/1/2017

For our first lineup we included Austin Rivers and Kyle Anderson. As we can see Kyle
Anderson scored 28.75 fantasy points, which is 20 more than what our model predicted but
it’s almost exactly the fantasy score that he averages when Kawhi Leonard isn’t playing.
Moreover his salary cost was only 3,000$. Austin River’s prediction was already a bit high
compared to his usual fantasy numbers, due to Chris Paul’s 2 weeks absence. But for this



game Clippers would play without Blake Griffin. This resulted in Austin Rivers scoring 41.5
fantasy points.

Beside our tweaks our model performed great overall, with Jeff Teague’s prediction being the
only one with low accuracy. This lineup hit our target of 280 fantasy points and would most
likely enter the prize pool in a cash game contest on DraftKings. Fantasy cruncher’s optimizer
produced a lineup that scored quite low fantasy points

We generated one more lineup for the same date but this time we included Jamal Crawford
instead of Austing Rivers.

23/1/2017
Player Name Predicted Score Actual Score
Crawford 18 27,5
Anderson 7,9 28,75
Monroe 33,2 37,5
Thaddeus Young 28,9 19,75
Markieff Morris 37 36
James 55,5 62,5
Bogdanovic 24,3 11,5
Harden 63,1 62,65
Total 268 286

Image 26. Second generated lineup for 23/1/2017

Our second generated lineup reached our target score as well, with Jamal Crawford scoring
exactly the fantasy points he averaged in games where Chris Paul was not playing.

For 27" of January 2017 we generated two line ups. One without any player preference and
one with Normal Powell included. Image 27 shows Demar DeRozan’s injury report prior to
the game start and image shows 29 Normal Powell’s fantasy points when DeRozan is not

playing.

Date: | 01/27/2017 go

oA oN,
A

7. DeMar DeRozan - G/F - Raptors

DeMar DeRozan (right ankle sprain) will not play Friday vs. the Bucks.

The Raps have lost five-straight games, but feel no need to rush back their
leading scorer. DeRozan should be considered day-to-day going forward.
Norman Powell started each of the Raps last two games in place of DeMar and
has been surpassingly productive. Powell is averaging 18.5 points, 4.5
rebounds, 2.0 assists and 1.5 steals over those two contests. With DeRozan
missing another game, Powell makes for an intriguing streaming and/or DFS
play on Friday night.

Related: Norman Powell
Source: Eric Smith on Twitter Jan 27 - 11:21 AM

Image 27. DeMar Derozan’s Injury report by www.rotoworld.com



Player Impact ©

- Avg Fpts Avg Mins |

ﬂ-m-m-l
&+ Serge Ibaka (PF) PF/C  $6,000 27.4 -100.0% -100.0%
&+ Norman Powell (SF SG/SF $4600 134 28.2 +109.9% 17 35 +106.1%
&+ Jonas Valanciunas(C) C $4,400 26.7 27.8 +4.3% 261 25 -3.1%
&+ CoryJoseph (PG) PG/SG $4,000 200 126 -36.9% 291521 -18.2%
&+ P.). Tucker (SF) SF $3,600 175 4.0 -77.1% 26 6 -76.8%

&+ Patrick Patterson (PF) PF $3,200 16.4 15.0 -8.2% 24| 22 -10.4%

&

&+ DeMarre Carroll (SF) SF/PF  $3,000 17.7 17.5 -1.0% 25 26 +6.1%

PG) PG $2,000 7.1 '15.0 +112.6% 8 15 +78.7%

&+ Fred VanVleet

Image 29. Toronto Raptors statistics when DeRozan isn’t playing

27/1/2017
Player Name Predicted Score Actual Score
Cousins 53,5 54,5
Brogdon 29,2 10
Walker 43 55
James Johnson 34,6 33,25
Jabari Parker 37,3 40,25
Isaiah Thomas 50,1 41,25
Manu Ginobilli 21,9 15
James 50,6 53,25
Total 320 303

Image 30. First generated lineup for 27/1/2017

27/1/2017
Player Name Predicted Score Actual Score
Powell 9,1 28
Cousins 53,5 54,5
James Johnson 34,6 33,25
Isaiah Thomas 50,1 41,25
Tim Hardaway Jr. 25,9 19,5
James 50,6 53,25
Walker 43 55
Parker 37,3 40,25
Total 304 325

Image 31. Second generated lineup for 27/1/2017



In the first lineup we run the optimizer without any player preferences. In the second run we
forced the optimizer to include Norman Powell in the lineup. Both lineups exceed our target
score. In both cases the accuracy of our model was quite decent, without any major mistakes
in individual predictions.

We run our last test for the NBA games played at 9 March 2017. At that date Kevin Love,
power forward of Cleveland Cavaliers was injured and would not participate at the upcoming

game as reported by rotoworld.com.

Date: |03/05/2017 | go

7@ Kevin Love - FIC - Cavaliers

Kevin Love (knee surgery) was able to go through some on-court agility and
shooting drills following Monday morning’s shootaround.

Love had his stitches removed last week, and started going through on-court
workouts prior to Cleveland leaving for their three-game road trip on March 1. To
be clear, in a best case scenario, Love won't be getting back to the court until just
two weeks remain in the regular season, and he's sure to be eased back into
things with rest days on back-to-back sets, so he's not a very attractive stash in
leagues without an IR-spot.

Source: Cleveland.com Mar 6 - 3:06

Image 32. Kevin Love injury report

The player who benefits the most when Kevin Love is not playing is power forward Channing
Frye, as seen in the image 33.

Player Impact (7]

.ﬁu;g Fpt=

LeBron James (SF) SFHPF $12200 544 579 +6.6% 24
&+ Kyrie Irving (PG) PG $8,300 399 450 H12.74% 35 35 +1.3%
&+ Tristan Thompson (C) C £5.500 242 249 +3.2% 30 30 -1.3%

&+ Channing Frye (PF) PF/C $3,600 16.1 206 +23.6% 17 22 +238.2%
&+ |.R. Smith (5G] SG $3500 174 124 -287% 30 22 -26.6W

& ImanShumpert(SG) SG/SF  $3400 148 165 +11.1% 24 28 +17.1%

&+ Deron Williams (PG) PG £3.100 141 174 +21.0% 18 21 +15.2%
&+ Kyle Korver (5G) SGASF $2000 161 193 +10.8W 23 25 +9.9%

Image 33. Cleveland Cavaliers statistics when Kevin Love is not playing



Once again we generated two lineups, one without restrictions and one with Fry included.
Images 35 and 36 show the results

9/3/2017
Player Name Predicted Score Actual Score
Griffin 47,2 43,5
Drummond 42,6 46
Chris Paul 46,8 35
McConnel 31,1 16,75
Nance Jr. 24,8 28,5
Roberson 21,1 20,25
James 54,4 67,25
Rivers 19,6 31,25
Total 288 289

Image 35. First generated lineup for 9/3/2017

9/3/2017
Player Name Predicted Score Actual Score
Frye 18,4 30,75
Westbrook 65,2 66,25
Griffin 47,2 43,5
Paul 46,8 35
Oladipo 30 32,5
Nance Jr. 24,8 28,5
Clarkson 27,1 30
Roberson 21,1 20,25
Total 281 287

Image 36. Second generated lineup for 9/3/2017

In this case we actually had better results without adding any player restrictions, even though
Frye scored 10 more fantasy points above his average when Kevin Love isn’t playing. At the
same time the second lineup had better accuracy on individual predictions, with only Chris
Paul’s prediction being more than 5 fantasy points different than his actual score.

6.4 Evaluation of tests

We tested our model in 12 different dates of 2016-2017 NBA regular season. We set a target
score of 280 fantasy points which according to our research, is the lowest score required to
enter the prize pool in DraftKings’ cash game contests. Moreover we combined our
predictions with minor tweaks based on information that can be found online in order to
further improve the results. In 9 out of 12 test cases our generated line up reached our target
of 280 fantasy points.



Line up score for each date tested
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Image 37. Fantasy score for each date tested

In general our model seems to be able to correctly predict the performance of the average
NBA player with quite decent accuracy. Our model struggled to produce the optimal results in
cases that a player either underperformed or overperformed compared to his recent fantasy
performance in an extreme way. In most cases that didn’t hurt our results because of the
correct predictions on the rest of the players.



Technical details

This section will present and analyze the technical details of the algorithms used in this thesis.
We will describe how our web scrapper and lineup optimizer works. Technical details about
our model were described in chapter 5 so won’t be presented here.

6.1 Web Scrapper

In order to collect our data and construct the dataset we built a web scraper which reads
player’s data from www.dfsgold.com and writes them into a CSV file. The web scraper was
built in python 3+. The libraries we used were:

e Pandas 0.20: Pandas is a python library used for data manipulation and analysis. It
aims to be the fundamental high-level building block for doing practical, real world
data analysis in Python.

e Beautiful Soup: Beautiful Soup is a Python library for pulling data out of HTML and
XML files. It works with any parser and helps providing idiomatic ways of
navigating, searching and modifying the parse tree. It basically presents the parsed
data in a more human-friendly form.

e Request: Requests allows users to send HTTP/1.1 requests, without the
need for manual labor. There's no need to manually add query strings to URLs, or to
form-encode the POST data.

The scrapper starts by reading a txt file which contains the URLs of the players that we want.
It loops through every line of that txt file. The code is shown below:

with open("ur.txt","r") as fh:
for lines in fh:

lines = lines.rstrip()



Considering that the data we want to grab is already in a table format as illustrated at the

image 38, we can just add that table contests in a dataframe using pandas library.

dfs = pd.read_html(lines)
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Next we remove the commas (,) in the salary columns because we will use commas as
separator in the CSV file. Moreover we sort the dataframe by date in an ascending order.

pd.to_datetime(df.Date).order().index

df=df.ix[pd.to_datetime(df.Date).order().index]

df['Salary'] = df'Salary'].str.replace(.,

1 ")
b

1

The next step is to remove any data we won’t use. This step could potentially be skipped and

clear the data while creating the dataset but we had already decided which statistical

categories we would use.

data = df.drop(['Opp',"C/Fpt","FGM-FGA","3PM-3PA"],1)

data = data[["Date","Pts","Rebs"," Ast","Stl","BIk","Fpts","Mins","Salary"]]

Even though our data is ready we still needed to get the player’s name in order to use it later
for naming our CSV file. Using request and beautiful soup libraries, we get the name of the
player as shown in the image 39.
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Image 39. Name of the player

Moreover we removed the all the texy after the first | character. Finally we wrote our data to a
CSYV file and used player’s name as file name.

r =requests.get(lines)

soup = BeautifulSoup(r.content)

for table in soup.find all('h2', attrs={'class": 'page-title pull-left'}):
print(1)

filename=table.text

filename=filename.split('|', 1)[0] + "'
filename=filename.replace('|', ")

data.to_csv(filename+".csv", sep=";',index = False)

6.2 Lineup Optimizer

The focus on this thesis was to predict certain values (player’s fantasy score) using machine
learning models. But in order to test the result and make the predictions usable, a lineup
needed to be created based on those predictions. This lineup consisting of 8 NBA players,
have to fulfill a number of constraints in order to be eligible for submission in upcoming
contests. This kind of problem is called Knapsack problem.

In Knapsack problem the goal is to maximize Y, vixi, subject to
N
iz1 wixiS W, x; >0

and x;integer (or x;binary), fori=1, 2, ...., N; where v;, w;and W are known integers and w
i (1=1,2,....N) and W are positive.



In programming, this problem can be solved using a dynamic programming algorithm by
computing the optimal value given a list of items with values and weights, and a maximum
allowed weight. In our case we had to choose the 8 players with the best values while taking
into account the following constraints:

o The total amount of salary can’t be more than 50.000 $

e There has to be at least 1 player who’s eligible for point guard position (PG)

e There has to be at least 1 player who’s eligible for shooting guard position (SG)

e There has to be at least 1 player who’s eligible for small forward position (SF)

e There has to be at least 1 player who’s eligible for power forward position (PF)

e There has to be at least 1 player who’s eligible for Center position (C)

e There has to be at least 1 player who’s eligible for either point guard or shooting
guard position (G)

e There has to be at least 1 player who’s eligible for either small forward or power
forward position (F)

Looking at the python code we got 2 classes and 4 functions. The player class defines the
characteristics for each player. Each player has a name, 1 or more positions (pos), a salary
(cost) and a projected value.

class player:
cost=10
projected value =0
name=""

pos=10,0,0, 0, 0]

def init (self, c, pro_val, name, possible positions, force include):
self.cost =c
self.projected value = pro_val
self.pos = possible_positions
self.name = name
self.include = force include

Class entry checks the constraints for every player that is added to the list and calculates the
new values

class entry:
def init (self, past_entry, new_player, index):
self.value = -1
self.cost = -1
self.cur_spots=[1, 1,1, 1,1, 1,1, 1, 1]
self.player list =]
self.past_index = -1

if (past_entry is None):
if (index == -1):
return
else:
self.value = new_player.projected value
self.cost = new_player.cost



self.past_index = index
self.player_list.append(index)
return

self.value = past_entry.value + new_player.projected value

self.cost = past_entry.cost + new_player.cost
self.past_index = index

for i in range(9):
self.cur_spots[i] = past_entry.cur_spots][i]

for iin past_entry.player list:
self.player_list.append(i)

self.player_list.append(index)

Function get_player list reads the CSV file that contains our data. Next it appends players in
groups of 8, creating every combination possible.

def get player list(possible name):

file_name = 'dffinal.csv'

player list={]
with open(file_name) as csvfile:
reader = csv.reader(csvfile, delimiter=",")
reader.next()
for row in reader:
if (int(row[4]) ==-1):
continue

name = row[0]

pos_p = get_possible_positions(row[1])

c =row[2]

v =row[3]

my_p = player(int(c) / 100, float(v), name, pos_p, int(row[4]))

player_list.append(my_p)
return player list
Function find_best_player is the main function of the code. After reading the list of all
possible combinations, it checks which combinations actually fit our criteria and then prints

the one with the best value, which is the combination with the highest total fantasy score.

def dp_find best(player list, aflag):
score_table =[]

force list=1[]



for p in range(len(player_list)):
if (player_list[p].include == 1):
force list.append(p)

for cost_max in range(501):
col =[]
for play num in range(9):
best index = -1
best score =-1
break afterwards = False
for player in range(len(player _list)):

if (play num < len(force list)):
player = force list[play num]
break afterwards = False

if (player list[player].cost > cost max):
if (break afterwards):
break
continue

potential score = -1
if (play_num != 0):
if (score_table[cost max - player list[player].cost][play num - 1].value > 0):
potential score = score_table[cost max - player_list[player].cost][play num -
1].value +\
player list[player].projected value
else:
potential score = -1
else:
potential score = player list[player].projected value

if (potential score > best score):
if (play num == 0):
best score = potential score
best_index = player
if (break afterwards):
force_list.pop()
break

continue

if (add player possible(score table[cost max -
player list[player].cost][play num - 1],
player_list[player], player)):
best score = potential score
best index = player

if (break afterwards == True):
force list.pop()
break

if (cost max > 0 and score table[cost max - 1][play num].value > best score):
col.append(score table[cost max - 1][play num])



-1],

else:

if (best_score ==-1):

col.append(entry(None, None, -1))
elif (play num == 0):

col.append(entry(None, player list[best index], best_index))
else:

col.append(entry(score_table[cost max - player list[best index].cost][play num

player list[best index], best index))



Conclusion

In this chapter we will present the conclusion of this project and sum up the success rate of
our model. We will also describe the ways that the model can be improved in the future.

7.1 Outline and conclusions

This thesis was an attempt to find possible applications of machine learning in daily fantasy
sports. The growing popularity of daily fantasy sports along with them being a relative new
and unexplored domain, made fantasy sports an interesting field to apply machine learning
principles and techniques. Moreover the goal of fantasy sports, which is to select a high
scoring line up, make them ideal for applications of prediction models.

Our goal was to create a model which would generate NBA lineups with potential to stay
profitable when submitted in daily fantasy contests. We focused on NBA cash games because
they are considered easier to predict in comparison with other sports like baseball and
American football and GPP contests. Moreover due to the different scoring format on daily
fantasy sites, our lineups would be suitable for draftkings only. But with some minor tweaks
in the database it can be used for any daily fantasy website.

To evaluate our success we set a target score and also compared our results with paid services
which offer daily fantasy sports predictions. We avoided testing our lineups in real time
contests on draftkings due to the large amount of money that would be required to actually
submit a big amount of lineups. But we provided evidence that reaching our target score on
any given lineup would translate into profits in the long run.

Our model managed to reach the target score on the majority of dates that was tested, even on
cases which the prediction on certain players was way off their actual score. At the same time
it produced way better results than some websites that offer fantasy sports predictions. We
believe that using our model combined with some basic human insight can result into profits
for a daily fantasy sports player.



7.2 Future work

We developed our model while focusing on only one sport, one type of contest and one
website. Adjusting the model for other websites would be quite simple, but a different sport
like American football or even a different type of contest for the same sport would require a
whole different approach. Basketball is considered quite easy to predict with the lowest
amount of variance compared to other sports. We believe that developing a model for another
sport would require a huge amount of time and resources and still the results would not be as
good. The same applies for GPP contests.

As we mentioned, the minutes a player is going to play have a huge impact in his fantasy
score. We tried to predict those minutes using player’s average minutes in last games
combined with betting lines, which is a method a lot of experienced fantasy players use. Even
though the results were decent there is still room for improvement and more automation in
this area. Reading and analyzing Twitter feeds, taking into consideration the time span
between player’s last games could improve the accuracy of predicted player minutes. Those
examples could be even used for developing a machine learning model for minute
predictions.

Except from the minutes played there are a lot more factors that impact a player’s fantasy
performance. There are measured statistics like the points allowed by a team for a specific
position, team’s allowed points per minutes, the pace that a team plays (which usually results
on more points scored), etc. These statistics can be implemented in our model and improve it
even more.

Daily fantasy sports it’s a competitive online game which constantly grows in popularity.
Right now it is considered to be on early stages and there are a lot of new players joining
every year. But as players become more experienced and the use of prediction models
becomes the norm, winning a contest and stay profitable in the long term becomes harder.
Moreover having a big starting capital to invest can give the player an advantage and
minimize the risk. At the end of the day, even though winning in daily fantasy sports or
games like poker require a certain amount of skill, it’s still a form of gambling which means
luck will always be a big factor.



Annex

8.1 Web Scrapper

Requirements:

e Pytthon 3.2+

e Request python library

e BeatufiulSoup python library
e Pandas python library

Code:

import requests
from bs4 import BeautifulSoup
import pandas as pd

with open("'ur.txt", '"r'"") as th:
for lines in th:
lines = lines.rstrip()
print(repr(lines))

dfs = pd.read html(lines)

for df in dfs:
print(2)

d3 = len(df.index)

print (d3)

if d3 >2:

pd.to_datetime(df.Date).order().index
df = df.ix[pd.to_datetime(df.Date).order().index]
df['Salary'] = df['Salary'].str.replace(',’, '")

data = df.drop(['Opp', "C/Fpt", "FGM-FGA", "3PM-3PA"], 1)
data = data[[""Date", ""Pts"", "Rebs"", "Ast", "Stl", "BIk", "Fpts", "Mins",
"Salary"]]

r = requests.get(lines)
soup = BeautifulSoup(r.content)
for table in soup.find all("h2', attrs={'class': 'page-title pull-left'}):



print(1)
filename = table.text

filename = filename.split("|", 1)[0] +"'|'

filename = filename.replace('|', ')

data.to_csv(filename + ".csv", sep=";', index=False)
else:

pass

8.2 Prediction model
Requirements:

e Python 3.2+

e Pandas python library

e Numpy python library

e Sklearn python library

e Glob python library

e  Os python library

e (CSV files have to be placed in directory : C:\\CSVfiles

Code:

import pandas as pd

import numpy as np

from sklearn import cross_validation

from sklearn.ensemble import RandomForestRegressor
import glob

import os

# read files

path = "C:\\CSVfiles\\"

filenames = glob.glob(path + "/*.csv'")

for infile in glob.glob(os.path.join(path, '*csv")):

names = ['Position’, 'Date’, "PTS", "RB", 'Assist', 'BIk’, 'Steals', 'DFS', 'MP',
"Salary"]
df =pd.read_csv(infile, names=names, error bad lines=False)

df123 = os.path.splitext(os.path.split(infile)[ 1])[0]
df.index = df[""Date"']

df555 = df.loc[:3917].tail(7)

df333 = dffdf.index !=3917]

df333 = df333.iloc[::-1]

forecast col = 'DFS'

df333['label'] = df[forecast col]

labels = df333[forecast col]

data = np.array(df333.drop(['Date', 'Position'], 1))

# define X and Y
X = np.empty([len(data) - 6, 6 * len(data[0])])



for i in range(0, len(data) - 6):
if 1> len(data) - 1:
break

result = np.array(data[i])
for j in range(1, 6):

result = np.concatenate((result, data[i + j]))
X[i] = result

y = labels[6:]
X train, X test, y train, y_test = cross validation.train test split(X, y, test size=0.01)

# Randomf Forest

cIfRFR = RandomForestRegressor(bootstrap=True, criterion="mse', max_depth=22,
max_features=7, max_leaf nodes=None, min_impurity decrease=0.0,
min_impurity split=None, min_samples_leaf=1,
min_samples_split=2, min_weight fraction_leaf=0.0,
n_estimators=50, n_jobs=1, oob_score=False, random_state=None,
verbose=0, warm_start=False)

clfRFR fit(X, y)

nn = clfRFR.predict(X _train)

n2 = clfRFR.predict(X _test)

yR true, yR pred =y test, clfRFR.predict(X_test)

# linear

clfLNR = LinearRegression()

clfLNR. fit(X, y)

nnL = cIfLNR.predict(X train)

nl2 = clfLNR.predict(X test)

yLNR true, yLNR pred =y test, cIfLNR.predict(X test)

names = ['Postion', 'Date’, "PTS", "RB", 'Assist', 'BIk’, 'Steals’, 'DFS', 'MP',
"Salary"]

# datframe for validation

dfnew = df555

forecast col2 = 'DFS'

dfnew('label'] = dfnew[forecast col2]
df.dropna(inplace=True)

labels3 = np.array(dfnew[ 'label'])

# define X and Y
data2 = np.array(dfnew.drop(['Date’, 'Position'], 1))
Xnew = np.empty([len(data2) - 6, 6 * len(data2[0])])
for i in range(0, len(data2) - 6):
if 1> len(data2) - 1:
break

result2 = np.array(data2[i])
for j in range(1, 6):
result2 = np.concatenate((result2, data2[i + j]))
Xnew[i] = result2
ye = labels3[6:]
df5 = dfnew[['Salary', 'Date', 'Position']]



ss = pd.DataFrame(cIfRFR.predict(Xnew))
yLNR2 true, yLNR2 pred = ye, clfRFR.predict(Xnew)

# Set date and write to csv

dfdoul = dfnew[(dfnew['Date'] == 3917)]

dfdoul.reset_index(drop=True, inplace=True)

dfdoul2 = dfdoul.drop(['Date', "PTS", "RB", 'Assist', 'Blk', 'Steals', 'DFS', '"MP",
'label'], 1)

dfdoul2['filename'] = [df123]

dfdoul3 = pd.concat([dfdoul2, ss], ignore index=True, axis=1)

dfdoul3.columns = ['Position’, 'Salary', 'Name', 'Pred']

dfdoul3['Pred'] = dfdoul3['Pred'].apply(lambda x: round(x, 1))

dfdoul3 = dfdoul3[['Name', 'Position’, 'Salary’, 'Pred']]

dfdoul3.to_csv('dffinal’', mode='a', index=False, header=None)

8.3 Lineup Optimizer
Requirements:

e Python 2.7
e A CSV file named dffinal.csv with the format shown in the image 40

Al-Farouq Aminu ,SF,5700,25.7,0
Alex Abrines ,5G,3000,12.5,0
Alex Len ,C,4100,15.6,0

Allen Crabbe ,S5G,3900,13.7,0
Andre Drummond ,C,6800,42.6,0
Andre Roberson ,SF,3500,21.1,0
Andrew Harrison ,PG,3500,9.2,0
Aron Baynes ,C,3500,12.3,0
Austin Rivers ,S5G,3500,19.6,0
Blake Griffin ,PF,8100,47.2,0
Brandan Wright ,PF,3000,14.4,0
Brandon Bass ,PF,3000,6.5,0
Brandon Ingram ,SF,4900,22.7,0
Channing Frye ,C,3700,18.4,0
Chris Paul ,PG,8000,46.8,0

Corey Brewer ,SF,3000,10.7,0
D'Angelo Russell ,PG,7100,29.1,0
Danny Green ,S5G,3600,15.6,0
David Lee ,PF,3700,17.4,0

Davis Bertans ,PF,3000,8.9,0
DeAndre Jordan ,C,6200,39.5,0
Dejounte Murray ,PG,3500,7.0,0
Deron Williams ,PG,3900,13.3,0
Derrick Jones Jr. ,SF,3000,7.5,0
Derrick Williams ,PF,63800,12.8,0
Devin Booker ,S5G,6600,30.4,0
Dewayne Dedmon ,C,3700,22.0,0
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Image 40. CSV file example for lineup optimizer
Code:

import csv
import sys



import getopt

#create a class that defines player's attributes
class player:

cost=0
projected_value =0
name ="

pos =10, 0,0, 0, 0]

def init (self, c, pro_val, name, possible positions, force include):
self.cost=c¢
self.projected_value = pro_val
self.pos = possible positions
self.name = name
self.include = force include

def print_self(self):
print("' %s, %f, %f" % (sclf.name, self.projected value, self.cost))

#check the constraints for every player that is added
class entry:
def init (self, past_entry, new_player, index):

self.value = -1
self.cost = -1
self.cur spots=[1,1,1,1,1,1,1,1,1]
self.player list =[]
self.past_index = -1

if (past_entry is None):

if (index == -1):
return

else:
self.value = new_player.projected value
self.cost = new_player.cost
self.past_index = index
self.player_list.append(index)
return

self.value = past_entry.value + new_player.projected value

self.cost = past_entry.cost + new_player.cost
self.past_index = index

for i in range(9):
self.cur_spots[i] = past_entry.cur_spots[i]
for iin past_entry.player list:

self.player_list.append(i)

self.player list.append(index)

def add player possible(past_entry, new_player, player_index):



for current player in past_entry.player list:
if (current_player == player_index):
return False

player position = -1

for i in range(5):
if (new_player.pos][i]):
player_position =1
break

if (player_position < 4):
start_index = player_position * 2

if (past_entry.cur_spots[start index + 1]):
return True

else:
return False

else:
if (past_entry.cur spots[8]):
return True
else:
return False

def dp_find best(player list, aflag):
score_table =[]

force list=]

for p in range(len(player list)):
if (player_list[p].include == 1):
force list.append(p)

for cost_max in range(501):
col =[]
for play num in range(9):
best index = -1
best score =-1
break afterwards = False
for player in range(len(player list)):

if (play num < len(force list)):
player = force list[play num]
break afterwards = False

if (player list[player].cost > cost max):
if (break afterwards):
break
continue

potential score = -1
if (play_num != 0):
if (score_table[cost max - player list[player].cost][play num - 1].value > 0):



potential score = score_table[cost max - player list[player].cost][play num -
1].value +\
player list[player].projected value
else:
potential score = -1
else:
potential score = player list[player].projected value

if (potential score > best_score):
if (play_num == 0):
best score = potential score
best_index = player
if (break afterwards):
force list.pop()
break

continue

if (add player possible(score table[cost max -
player list[player].cost][play num - 1],
player list[player], player)):
best score = potential score
best_index = player

if (break afterwards == True):
force_list.pop()
break

if (cost max > 0 and score table[cost max - 1][play num].value > best_score):
col.append(score_table[cost_max - 1][play_num])
else:

if (best_score ==-1):

col.append(entry(None, None, -1))
elif (play num == 0):

col.append(entry(None, player list[best index], best_index))
else:

col.append(entry(score_table[cost max - player list[best index].cost][play num

-1 ]9
player list[best index], best index))

score_table.append(col)

print("The highest projected score is: %f" % (score_table[500][7].value))

for p in score_table[500][7].player_list:
player_list[p].print_self()

#define player positions

def get possible positions(pos):
ps=1[0,0,0, 0, 0]
if (pos == 'PG"):



ps[0] =1
elif (pos =='SG"):

ps[l]=1

elif (pos =='SF"):
ps(2] =1

elif (pos =="PF"):
ps(3]=1

elif (pos =="C"):
ps[4]=1

else:

print("POSTION NOT POSSIBLE!!!!")
return ps

#read the csv
def get player list(possible name):

file_name = 'dffinal.csv'

player list =]
with open(file name) as csvfile:
reader = csv.reader(csvfile, delimiter=",")
reader.next()
for row in reader:
if (int(row[4]) == -1):
continue

name = row[0]

pos_p = get possible positions(row[1])

¢ =row[2]

v =row[3]

my_p = player(int(c) / 100, float(v), name, pos_p, int(row[4]))

player_list.append(my_p)
return player_list
def main(argv):
aflag = True
fflag = False
try:
opts, args = getopt.getopt(argv, "af:"")
except getopt.GetoptError:
print (" python optimal_lineup.py -a -f <optional_file_name>")

sys.exit(2)

player_ﬁlename —_nn

player list = get_player list(player filename)

dp find best(player list, aflag)



if _name =="_main_ ":

main(sys.argv[1:])
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