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Περίληψη 

Τα φαντασιακά αθλήματα παρουσιάζουν μεγάλη αύξηση στην δημοτικότητά 
τους, κυρίως στις Ηνωμένες Πολιτείες Αμερικής και στον Καναδά. Επίσης με την 
εμφάνιση όλο και περισσότερων ιστότοπων που προσφέρουν ιστορικά δεδομένα για 
κάθε σπορ και αθλητή, είναι πιο εύκολο από ποτέ για κάποιον χρήστη να βρει 
στατιστικά για το άθλημα που τον ενδιαφέρει. Ταυτόχρονα μέθοδοι και αλγόριθμοι 
μηχανικής μάθησης είναι προσβάσιμοι στον μέσο χρήστη που χρησιμοποιεί έναν 
οικιακό προσωπικό υπολογιστή. Η προσβασιμότητα αυτή μαζί με την εξέλιξη της 
τεχνολογίας μπορούν να συνδυαστούν για την δημιουργία μοντέλων που προβλέπουν 
την επίδοση του εκάστοτε αθλητή και κατ’ επέκταση να δώσουν στον χρήστη 
πλεονέκτημα σε κάποιo διαγωνισμό φαντασιακών αθλημάτων.  

Σε αυτήν την διπλωματική εργασία αναπτύξαμε ένα μοντέλο μηχανικής 
μάθησης, το οποίο βασίζεται στις προηγούμενες επιδόσεις των αθλητών για να 
προβλέψει το φαντασιακό τους σκορ. Δοκιμάσαμε τρεις διαφορετικές μεθόδους 
μοντελοποίησης για παλινδρόμηση, Διανύσματα Υποστήριξης, Γραμμική 
Παλινδρόμηση και Μπεϊσιανή Παλινδρόμηση. Αναπτύξαμε επίσης με την χρήση 
δυναμικού προγραμματισμού έναν αλγόριθμο  ο οποίος επιλέγει με βάση τις 
προβλέψεις μας τους καλύτερους δυνατούς παίκτες για κάποιον διαγωνισμό 
φαντασιακών αθλημάτων.  

Για να εξετάσουμε την αποτελεσματικότητα των μοντέλων μας, τα δοκιμάσαμε 
σε τυχαίους διαγωνισμούς της περιόδου 2016-2017 του ιστότοπου 
www.draftkings.com. Επίσης συγκρίναμε τις προβλέψεις μας με υπηρεσίες που 
προσφέρονται από διάφορους ιστότοπους. Τα αποτελέσματα ήταν αρκετά 
ενθαρρυντικά. Στις περισσότερες περιπτώσεις οι προβλέψεις του μοντέλου μας θα 
κέρδιζαν τους εκάστοτε διαγωνισμούς και ήταν καλύτερες συγκριτικά με τις 
προβλέψεις διαφόρων ιστότοπων.  

 
 
 
Λέξεις Κλειδιά: <<Μηχανική Μάθηση, Παλινδρόμηση, Φαντασιακά Αθλήματα>> 

  



 

  

  



 

  

Abstract 

Fantasy sport’s popularity is growing rapidly especially in United States of 
America and Canada. Moreover with the emergence of sport analytics and sports data 
related websites, it’s now easier than ever to find historical data for any 
given sport or athlete. At the same time machine learning algorithms 
and methods are accessible and usable by any user on an average 
computer. This accessibility on data and technology can be combined 
to create predict ion models that  can be used to est imate a player’s 
performance and potentially give users a competitive advantage in 
daily fantasy sports contests.  

In this thesis we developed a machine learning model that  predicts 
fantasy performance of NBA players,  based on their past performance. 
We tried three different regression approaches,  Bayesian Regression, 
Linear Regression and Support Vector Regression. We also developed 
an algorithm that  uses dynamic programming to generate a daily 
fantasy sports lineup based on our model’s predictions.  

We ended up using Bayesian Regression for our model due to 
better produced results compared to the other approaches.  Next we 
generated lineups for random contests of NBA 2016-2017 regular 
season. We also compared our results  with the predictions of websites 
that  offer similar services.  Through our tests we managed to produce 
several lineups that could potentially return profit in the long term and 
at  the very least  offer a tool  that  can be used by daily fantasy players  
to get an edge over their competition.  
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1 
 

Introduction 
 

1.1 Data Analysis in Sports 
 

The evolution of technology and the increased accessibility of the internet have lead data 
analysis to become an integral part of professional sports. Data analysis in the current state of 
the technology allows experts, to track every kind data imaginable and use it to analyze 
games and players. As a result there is a constant increase in Professional teams’ prioritization 
of statistics and data when making decisions. Nowadays every major professional sports team 
has analytics department or analytical experts on their staff. Moreover sports fans show an 
immense interest in analytical content. For example www.basketball-reference.com, a website 
that collects historical basketball data, has almost four million unique visitors every month. 

This rise in popularity of data analysis and statistics has made easier for researchers and 
gamblers to use historical data in order to predict sports outcomes. In addition the increase of 
computing power of the average computer allows users to develop and run their own 
prediction models and use them in order to gain a competitive edge. 

1.2 Fantasy Sports 
 

Fantasy sports is a type of online game where participants assemble an imaginary team of real 
athletes of a professional sport. These teams compete with each other based on the actual 
statistical performance of the athletes. Participants form leagues consisting from five to 
twenty people and lasts for twenty weeks. Scoring rules are set beforehand and can vary 
based on participants experience and competitiveness of the league. Fantasy sports are really 
popular in United States of America with around 56 million people playing them [1]. Almost 
20% of adult men in U.S.A participate in a fantasy sports league and around 10% of adult 
women. 

Even before the internet, there were a few sports enthusiasts, playing fantasy sports using a 
paper and a pencil, but the internet helped transform this hobby into a billion dollar industry. 
There are 2 ways that people play fantasy sports. The more traditional one doesn’t involve 
any gambling (or includes a small prize pool for the winner) and includes a league of usually 
8-10 competitors who hold a “draft” before every NBA/MLB/NFL season. During this draft 
the participants have a limited amount of virtual resources (usually a salary cap) available to 



 

  

them. Using these resources, each competitor selects a virtual team, compromised of real 
athletes. Fantasy competitors then face each other in heads-up games every week. The scoring 
is dictated by the statistical in game performance (i.e. rebounds, touchdowns, steals, points, 
etc.) of the athletes in their actual games. The challenge of fantasy sports is to maximize the 
value of your resources, by selecting players who provide good statistical performance 
relative to their price in the draft. 

The daily format is a bit different from the traditional format. In daily fantasy sports people 
compete with each other in tournaments that last only 1 day. In websites like DraftKings and 
FanDuel, users draft a fantasy team in their sport of choice and pay an entry fee to submit that 
team into a pool of other teams. Those websites offer contests which hundreds of people can 
enter at the same time and potentially win from a multiple of their buy-in as a payout to 
thousands of dollars.  

1.2.1 Industry Background 
 

During the year 2003 the Travel Channel on American cable television started airing World 
Series of Poker inaugural season. World Series of Poker (WSOP) was a poker tournament 
with a buy-in of 10,000 $ and 10 million dollars prize pool. Moreover the tournament gave 
the chance to players to qualify for the main even by winning small online tournaments held 
on platforms like PokerStars. The winner of WSOP first season was Christopher 
“moneymaker” Bryan who qualified for the tournament by winning an online poker 
tournament with an entry fee of 39$. He was an accountant and an amateur poker player and 
won over 2.5 million dollars on the first season of WSOP. It was also the first live tournament 
that he participated. His win caused a huge growth in online poker’s popularity around the 
world. Online poker doubled its numbers every year during the 2003-2006 period. That period 
is called “poker boom” [2]. 

That growth of the online poker industry came to an end at 13th of October 2006 when 
American government signed The Unlawful Internet Gambling Enforcement Act (UIGEA). 
This bill basically made the online poker websites illegal but at the same time contained 
explicit language that legalized daily fantasy sports. Since online gambling was pretty popular 
in the U.S.A and with online poker reaching its “golden age”, there was a huge gap in the 
industry after the sign of UIGEA. That gap was filled successful with the introduction of 
Daily Fantasy Sports, since people were playing fantasy sports for years, just in a different 
format. 

The first DFS website (Fantasy Sports Live) launched in 22 June 2007, followed by 
SnapDraft of NBC 1 year later and Fanduel in January of 2009. In 2013 Travis “Tspieldo” 
Spieth became the first DFS millionaire by winning 1 million dollars from a single contest. 
After that DFS kept growing fast and today every major sports league in the U.S.A has a DFS 
site as their official partner. DraftKings partnered with MLB, UFC and NHL and DraftDuel 
with NBA. In 2016 the revenue for DFS websites was around 3.6 billion dollars with 
DraftKing controlling more than 90% of the market. The market is projected to be at 4.8 
billion dollars in 2020. 

While daily fantasy sports have enjoyed explosive growth since 2013, the industry's origins 
can be traced back more than a decade. The concept for DFS was discussed throughout the 



 

  

2000's, with the first gaming sites being founded in 2007. Since that time, sites have raised 
hundreds of millions of dollars in venture capital funding, while market leaders FanDuel and 
DraftKings have developed official business relationships with the NBA, MLB, NHL, UFC 
and dozens of professional sports franchises, as well as major corporations such as NBC and 
Comcast.  

1.2.2 Scoring and Format 
 

As described above, in DFS the users have a set amount of virtual currency available, which 
they use to draft real life players and enter a pool with other teams in order to compete for a 
prize. The contests last 1 day and the same players can be drafted by multiply users. Users can 
submit or modify their lineups until 5 minutes prior to the start of the first game of the day. 

 

Image 1. DraftKings drafting interface. 

In the image 1 we can see the interface of DraftKings when a user drafts his lineup for an 
NBA contest. Except from the salary restriction there is also a restriction in the position of the 
drafted players. So for example in DraftKings, users have to Draft one point guard, one 
shooting guard, one small forward ,  one power forward, one center, one guard ( point guard 
or shooting guard) and one forward (small or power forward). The last spot can be filled with 
a player who is eligible for any position. 



 

  

 

Image 2. Drafkings NBA scoring. 

Image 2 shows the scoring format on DraftKings website. For every point a player of a user’s 
drafted team scores, user gains 1 fantasy point, for every assist 1.5 fantasy points, for every 
steal 2 fantasy points etc. After all games are finished, the fantasy points of the players that 
were drafted are summed up. This sum is the line up’s total fantasy score.  

The prize pool, entry fee and the number of participants vary for each contest. There are 
tournaments with entry fees as low as 0.5 dollars and there are tournaments that require 
thousands of dollars to enter. The final prize pool is determined by the entry fee. Usually the 
website keeps 15% of the user’s entry fee and the rest goes to the prize pool.  
Tournaments can have from ten to thousands of participants. A big player pool translates into 
bigger prize for the winners, but at the same time smaller chance of placing on the top ranks. 

1.2.3 Fantasy Contests 
 

There are two different types of contests in daily fantasy sports: Cash games (also called 
50/50 or double up) and Guaranteed Prize Pool (GPP).  

 Cash games are tournaments where the user competes for a chance to double his entry 
money. The top 50% participants double their entry fee and the rest don’t win 
anything. In a player pool consisted of 100 participants the prize will be the same for 
the participant who finished first and the one who finished at 50th place.  

 Guaranteed prize pool contests have a guaranteed prize which doesn’t dependent on 
participant’s entry fee. The big differences with cash games are the scaling prizes and 
the much smaller percentage of places which get paid. In GPP contests the first place 
wins almost 15-20% of the prize pool and each place bellow wins a smaller amount. 
The percentage of player pool that wins is usually around 20%. 

Each type of contest requires a different strategy in order to succeed and have different 
amount of luck and variance involved. Cash games tend to have less variance because of 
bigger amount of participants getting paid. On the other hand GPP games require some 
luck but at the same time a good placement results in high profit. 



 

  

 

1.3 Project Goal 
 

The goal of this thesis is to develop an algorithm that will provide a competitive advantage 
over the average DFS player and translate this advantage into profit. Let’s assume that we 
submit 10 different line ups, generated by our models, in 10 different 50/50 contests with an 
entry fee of 5$ per contest. For every contest we win we get 9.5$ back. Winning 6 out of 10 
contests will translate into 7$ or 11.4% increase of our original capital. This means that 
maintaining a 55% win rate will ensure profit in the long term.  

To achieve that we used machine learning in order to predict players performance for each 
game they will play. Next we created a lineup optimizer, which generates the optimal lineup 
for a particular date based on our previous predictions. 

We focused on NBA daily fantasy 50/50 or “cash” contests for www.draftking.com. We 
chose NBA because basketball is considered a more predictable sport compared to other 
popular sports like American football (NFL) and Baseball (MLB). The reason we chose to 
emphasize on cash contest is that compared to regular tournament (GPP) games, cash games 
have lower variable and a lot less luck involved in the final result. Although that doesn’t mean 
that our predictions can’t be used for GPP games but the results are better and more consistent 
on cash games. Moreover since every fantasy website has different scoring rules, we focused 
on one website but the model could be used for other fantasy websites with a few tweaks on 
the database. 

To achieve our goal we collected statistical data from 2016-2017 season for each NBA player. 
Using that data we developed a regression model in python. The model was tested on 2016-
2017 NBA season. To measure our success we set a target score of fantasy points that our 
lineup should achieve in order to win a contest. Then we chose random dates of 2016-2017 
season and generated a lineup based on our model’s predictions. Furthermore we compared 
our model predictions with web applications that offer daily fantasy sports predictions to their 
users. 

1.3.1 Contribution 
 

 We studied and researched various daily fantasy sports communities in order to find 
which kind of data would be useful in a prediction model. 

 We tested different statistical categories and their impact on an NBA player’s fantasy 
performance. 

 We tested different regression models to find out which one can be used on daily 
fantasy score predictions. 

 We developed a machine learning algorithm which predicts the daily fantasy score of 
an NBA player on a given date, based on the athlete’s past performance. 

 We developed a python algorithm that generates the optimal line up for a given date, 
based on our machine learning model’s prediction. 



 

  

 We evaluated our models and found out that we can maintain a positive winning rate 
on draftkins NBA cash contests, which can translate into profit in the long term. 

  



 

  

2 
Related Works 
 

There are many DFS players that use one of the many DFS sites available that offer 
predictions for upcoming fantasy contests, such as https://www.fantasycruncher.com, 
https://www.fantasypros.com , https://dailyfantasynerd.com, 
https://www.rotoql.com/#oid=20119_1662. The most successful fantasy players develop their 
own prediction models which they use in order to gain advantage over the rest of the players. 
For example top fantasy player for 2015 Saahil Sud, has created his own prediction models 
and techniques[3].Moreover it is hypothesized that the DFS sites using something similar in 
order to define the price of the players in their DFS games. But due to the competitive nature 
of the game the code of these models isn’t publicly available. As a result there wasn’t any 
well documented work which we could study or base our model on.  

Even though there are not prediction models available to the public, there is a plethora of 
online communities which discuss daily fantasy sports. We used those communities to find 
information about how each statistical category or any other parameter affects a player’s 
fantasy performance. Some of those communities are: 

 Reddit/DFSports: Reddit (www.reddit.com) is a social network platform designed to 
allow users to share web content and discuss. Content is organized by areas of interest 
called subreddits. There are over 1 million of subreddits. The subreddit DFSports 
(www.reddit.com/DFSports) is an online community dedicated to discussions around 
daily fantasy sports. It has 14 thousands of subscribers and even more readers. There 
are daily discussions about strategies for daily fantasy sports and links to useful 
resources. 

 RotoGrinders: Rotogrinders (www.rotogrinders.com) is a website with various 
contest related to daily fantasy sports. Their contest includes strategy suggestions, 
player’s analysis, player ranking, etc. They also provide a discussion forum where 
users can exchange tips or discuss about strategies in upcoming contests. 

 RotoWorld: Similar to Rotogrinders, Rotoworld (www.rotoworld.com) is a website 
dedicated on daily fantasy sports. It has content that include fantasy guides, strategy 
suggestions, daily analysis of upcoming contests and almost real time news about 
injury status of players. They also provide a discussion forum.  



 

  

3 
 

Theoretical Background 
 

3.1 Using machine Learning in DFS 
 

The current state of the technology allows experts, to track every kind of data imaginable and 
use it to analyze games and players.  As a result, there are new kinds of statistical categories 
created that can help measure and analyze players’ performance. In NBA for example, 
advanced statistics like Player Efficiency Rating (PER), Win shares, Offensive/Defensive 
Efficiency, Points per Possession were introduced trying to provide a better platform for 
experts to analyze the game and also for coaches to measure their team’s performance and try 
to improve it. But at the same time those stats can be used as a really helpful tool for 
predictions.  

Machine learning offers a great tool to use for developing prediction algorithms. With the 
amount of data that is publicly available online, users can create datasets with up to date 
statistics for each player and use regression algorithms to make predictions. 

The average user of a DFS website uses the website’s predicted scores as their metric. The 
relationship between player salaries and their predicted scores is close to linear. So if a 
prediction model manages to beat those generic predictions that DFS websites provide, a 
participant using this model can find undervalued players and get an edge on the average user.  

3.2 Machine Learning 
 

According to Arthur Samuel, machine learning gives "computers the ability to learn without 
being explicitly programmed”. It’s basically the ability of machines (computers) to mimic 
human behavior and improve their performance. Using machine learning a system’s 
performance can be increased through examples and past data, which results on less time and 
resources spent.  

Machine learning is widely used to solve classification, clustering and regression problems 
using different kinds of algorithms. Those algorithms can be grouped in two categories based 
on their learning style: 

 Semi-Supervised Learning: Traditional classifiers use only labeled data (feature / 
label pairs) to train their model. However labeled instances are often difficult, 



 

  

expensive or time consuming to obtain as they require the efforts of experienced 
human annotators. Meanwhile unlabeled data may be relatively easy to collect, but 
there has been few way to use them. Semi-supervised learning addresses this problem 
by using large amount of unlabeled data, together with labeled data, to build better 
classifiers [4].  

 Supervised machine learning algorithms use externally supplied instances to produce 
general hypotheses, which then make predictions about future instances. In other 
words, the goal of supervised learning is to build a concise model of the distribution 
of class labels in terms of predictor features. The resulting classifier is then used to 
assign class labels to the testing instances where the values of the predictor features 
are known, but the value of the class label is unknown [4] 

 

Image 4. The process of supervised learning [4]. 

 Unsupervised learning:  In unsupervised learning the input data is not labeled and 
does not have a known result. The algorithm tries to classify the input data without 
prior knowledge or category information. Unsupervised learning algorithms have 
often been criticized for trying to solve a particular task in harder way than is 
necessary [5]. 

Machine learning is employed in a range of computing tasks where designing and 
programming explicit algorithms with good performance is difficult or infeasible; example 
applications include email filtering, detection of network intruders or malicious insiders 
working towards a data breach, optical character recognition  learning to rank, and computer 
vision. Applications for machine learning include : 



 

  

 Adaptive websites 

 Affective computing 

 Information retrieval 
 Natural language understanding and processing 

 Search engines 

 Online advertising 

 Speech recognition 

 Economics 
 Financial market analysis 

 Translation 

 

 

3.3 Regression 
 

The problem we had to solve was a regression problem. In statistics, regression analysis 
includes any techniques for modeling and analyzing trends and relationships between a 
dependent variable and one or more independent variables. It’s used to make predictions and 
forecast future results based on known data. There are different machine learning algorithms 
used to solve regression problems. Some of them are: 

 

 Support Vector Regression (SVR) 
 Ordinary Least Squares Regression (OLSR) 
 Linear Regression 
 Logistic Regression 
 Stepwise Regression 
 Multivariate Adaptive Regression Splines (MARS) 
 Locally Estimated Scatterplot Smoothing (LOESS) 

 

3.3.1 Linear Regression 
 

Linear regression is a technique used to model a single response (outcome) variable based on 
one or more input variables. With linear regression we assume that there is a linear 
relationship between input and response variables[9]. 

Linear regression and regression models in general have two main objectives: 

 Establish if there is a relationship between two variables. More specifically, establish 
if there is a statistically significant relationship between the two. For example we can 
establish if there is a statistical relationship between income and spending, wage and 
gender, student height and exam scores, etc. 



 

  

 Forecast new observations. This means that we can use what we know about a 
relationship to forecast unobserved values. For example predict the sales over the 
next quarter based on the recent growth of sales and the growth rate. 

In regression models variables can play two different roles. They can be a dependent 
variable or and independent variable. Dependent variable is the one that we want to 
forecast or explain and its value depends on some other variable. We denote the 
dependent variable as y. Independent variable is the variable that is used to explain or 
predict the other one. Its value is independent and we denote it as X  

Mathematically, we can write a linear relationship as: 

Y= β0 + xβ1 + ε 

 

Where: 

 y = the dependent variable or our target 
 x is the independent variable 
 β1 is x’s slope or coefficient 
 β0 is the constant or intercept 
 ε is the error term 

 

3.2.2 Support Verctor Machines (SVM) 
 

Support Vector Machines (SVM) are supervised learning models used in machine learning 
that analyze data for classification and regression analysis. The goal of SVM is to design a 
hyperplane that classifies all training vectors into two classes, while the hyperplane leaves 
maximum margin from both classes. Margin is the distance between the hyperplane and the 
closest element from each class. 
 



 

  

 

Image 5. SVM Example 

In the image 5 we got two features x1 and x2, different elements to separate and also two 
different hyperplanes. We want to classify the elements into class square or class circle. Z1 
and Z2 are the distance between the hyperplane and the closest element to it. This distance is 
called margin. Both hyperplanes classify the elements correctly but with SVM we want to 
find the optimal solution, the hyperplane with the highest margin. In this case we can see 
clearly that Z2 margin is bigger than Z1 which makes the green hyperplane the optimal 
solution. 
 

We can describe SVM with a simple classification problem of two linear seperatable classes 
𝒞 , 𝒞 .  Assuming there is a separation function 
 

𝑔(𝐱) = 𝐰 𝐱 + 𝑤  
 
for which we got a vector w and a polarization 𝑤 , then: 
 

𝑔(𝐱)
< 0, αν 𝐱 ∈ 𝒞
> 0, αν 𝐱 ∈ 𝒞

 

The total of elements x for which 
 

𝑔(𝐱) = 0 
 
define the separation surface. These are the elements we can’t classify in class 𝒞  or in class 
𝒞 .  



 

  

There isn’t a single solution for this problem since we can separate those elements with 
infinite number of pairs w and 𝑤 . In order to find the optimal solution we need to define an 
assessment criterion. In SVM we use margin γ.  
 

 

The method of Support Vector Classification can be extended to solve regression problems. 
This method is called Support Vector Regression. 

3.2.3 Random Forests 
 

Random forests are an ensemble learning method of tree predictors where each tree depends 
on the values of a vector sampled independently and with the same distribution for all trees in 
the forest[8]. 

In order to achieve diversity among base decision trees, each tree is generated with the 
following method: If the number of records in the training set is N, then N records are 
sampled at random but with replacement, from the original data. This is a bootstrap sample. 
This sample is used as a training set for growing the tree. If  there  are  M  input variables,  a 
number m <<  M  is  selected  such that at  each node, m variables are selected at random out 
of M and the best  split  on  these  m  attributes  is  used  to  split  the  node. The  value  of  m  
is  held  constant  during  forest  growing. Each tree is  grown to  the  largest  extent  possible. 
There is no pruning. Using these steps, random forests method ensures that multiple trees 
affect the forest. Once the forest is trained, random forests use all trees in order to classify a 
new instance. When a tree classifies a new instance, the result is recorded as a vote. After the 
new instance runs through all the trees in the forest, the votes are counted and the instance is 
classified to the class with the most votes[7]. 

In a tree of classifiers { h ( x,Θk), k = 1 , ….} the Θk are independent identically distributed 
random vectors and each tree casts a unit vote for the most popular class at input x. 

Random forests for regression are formed by growing trees depending on a random vector Θ 
such that the tree predictor h(x, Θ) takes on numerical values as opposed to class labels. The 
output values are numerical and we assume that the training set is independently drawn from 
the distribution of the random vector Y, X. The mean-squared generalization error for any 
numerical predictor h(x) is: 

EX,Y (Y-h(X))2 

 

Random forests method can be an effective tool in prediction or classification due to the Law 
of Large Numbers theorem which indicates that the average of the results obtained from a 
large number of trials should be close to the expected value and will become closer as the 
volume of trials increases. Random forests does exactly what this theorem describes, by 
having multiply trees to vote for an instance and taking the result with the most votes as the 
correct one. Moreover forests give results competitive with boosting and adaptive bagging 
without changing the training set and they act to reduce bias. 

 



 

  

3.3 Python 
 

Python is a high level programming language. Python emphasize code readability and a 
syntax which allows programmers to express concepts in fewer lines of code than might be 
used in object oriented languages like Java or C++. 

Python has a large standard library, commonly cited as  Python’s greatest strengths, providing 
tools suited to many tasks. Python’s main feature is its versatility, as its interpreters are 
available for installation in many operating systems. 

3.3.1 Scikit-learn 
 

For this project we used scikit-learn. Scikit-learn is a Python module integrating a wide range 
of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised 
problems. This package focuses on bringing machine learning to non-specialists using a 
general-purpose high-level language. Emphasis is put on ease of use, performance, 
documentation, and API consistency. It has minimal dependencies and is distributed under the 
simplified BSD license, encouraging its use in both academic and commercial settings. 
Source code, binaries, and documentation can be downloaded from http://scikit-
learn.sourceforge.net. 

Scikit-learn harnesses this rich environment to provide state-of-the-art implementations of 
many well known machine learning algorithms, while maintaining an easy-to-use interface 
tightly integrated with the Python language. This answers the growing need for statistical data 
analysis by non-specialists in the software and web industries, as well as in fields outside of 
computer-science, such as biology or physics. Scikit-learn differs from other machine 
learning toolboxes in Python for various reasons: i) it is distributed under the BSD license ii) 
it incorporates compiled code for efficiency, unlike MDP (Zito et al., 2008) and pybrain 
(Schaul et al., 2010), iii) it depends only on numpy and scipy to facilitate easy distribution, 
unlike pymvpa (Hanke et al., 2009) that has optional dependencies such as R and shogun, and 
iv) it focuses on imperative programming, unlike pybrain which uses a data-flow framework. 
While the package is mostly written in Python, it incorporates the C++ libraries LibSVM 
(Chang and Lin, 2001) and LibLinear (Fan et al., 2008) that provide reference 
implementations of SVMs and generalized linear models with compatible licenses. Binary 
packages are available on a rich set of platforms including Windows and any POSIX 
platforms. 

Furthermore, thanks to its liberal license, it has been widely distributed as part of major free 
software distributions such as Ubuntu, Debian, Mandriva, NetBSD and Macports and in 
commercial distributions such as the “Enthought Python Distribution” 

  



 

  

 

 

4  
Development 
 

4.1 Creating the dataset 
 

In order to create a model that predicts the fantasy points for each player, first we had to 
create a dataset. The dataset had to be composed of the statistical values that constitute the 
fantasy score. Fantasy score in daily fantasy basketball is a sum of points, rebounds, steals, 
blocks, three points made and free throws. So the sum of the above real life statistics 
accumulated by a player is the value that we are trying to predict. 

To create the dataset we parsed data from www.DFSgold.com. For each NBA player we 
collected the statistics we mentioned above for every game he played during the 2016-2017 
NBA regular season. Next we created a CSV file for each player and put the data there as 
seen in the image 6 below. 



 

  

Image 6.  Quincy Acy’s statistics for 2015-2016 season 

Except of the 6 statistical categories that we used in daily fantasy basketball scoring, our first 
dataset contained some more data, like date, age of the player, opponent, minutes played, etc.  
Some of that data was used in the final excel files (like minutes played) and some like Age 
and 3PT% was not included. Since there is no documentation of similar work we couldn’t 
predetermine which data would be useful for our model. Due to the lack of available 
information on algorithms and models that other fantasy players use, there was no way to 
know the impact of each statistical category on the final prediction. In order to determine 
which data would have positive impact in our predictions we used the trial and error method. 
We run our prediction model with different datasets and evaluated the success of the model 
after each run. 

The statistical categories we ended up using were minutes played, points, field goals made, 
rebounds, assists, steals, turnovers, fouls and projected minutes. For every NBA player there 
was a CSV file with those statistical categories and the date of the game. 

After trying different statistical categories we found out that minutes played was the statistical 
category that had the most impact in model’s predictions. We run a lot of different tests with a 
variety of statistical categories, while not including minutes played. In every run the results 
were extremely inaccurate and the predictions seemed completely random. Only when we 
included minutes played as a feature, predictions started to be accurate.  

4.2 Predicted minutes 
 

As we mentioned above, minutes played was the statistical category that had the most impact 
in our predictions. But there isn’t any way to be able to know how many minutes a player is 
going to play before the game starts. As a result we had to find a way to create a good 
estimation of the minutes a player is going to play on his next game.  

The majority of NBA teams have some kind of fixed rotations during the regular season. 
There are players that are considered core which are usually 6-8 depending on the depth of 
the team and there are players called “bench warmers” who only play when the result of the 
game is already decided. Those core players are the players that usually score the most 
fantasy points. So those are the players whose minutes we want to predict. 

Assuming that a player is available to play and he is not injured, or not excluded from the 
team’s line up in order to get some rest, there are 4 factors that affect core players  minutes 
during a game: injury, foul trouble, overtime and the “blowout” factor. 

 “Blowout”: Blowout is a term that is used to describe an easy one-sided victory. It 
occurs when one athletic team or individual performer outscores another by a large 
margin, in such fashion that allows the second team or individual little chance of a 
victory from a point early in a competition, game, contest or event. For example at 
December 26 2015 Cleveland cavaliers were playing against Portland Trailblazzers. 
LeBron James, Cleveland Cavalier’s best player who was averaging 39.09 minutes 
per game in the last 5 games, was on the floor for only 25.19 minutes. He also scored 
only 23 fantasy points while he was averaging 46 in his last 5 games. The reason was 
that the Trailblazzers were winning by 20 points after the first period and they kept 



 

  

their lead for the rest of the game ending up winning by 29 points (105-76). Jared 
Cunningham, a bench warmer of Cavalier’s was the one who benefited the most from 
this blowout situation. He did not play a single minute in the last two games and in 
the next game but in this game he was on the floor for 12 minutes.  He also played 
less than 2 minutes in the next 4 of 6 Cavalier’s games. But even though he played 12 
minutes, he scored only 11 fantasy points. This example helps to understand that 
blowouts can cause a significant drop in a core player’s fantasy value but at the same 
time the improvement on bench warmers is not that significant to make them worth 
including in a lineup. 
 

 Injuries: Injuries are and will always be a part of a competitive athletic event. If an 
NBA player gets injured before the game starts, teams make public announcements 
and fantasy players can exclude this player from any lineup they will potentially 
submit. But an in game injury can occur, even early in a game and sadly there is no 
way to predict that.  
 

 Foul Trouble: Foul trouble is a phrase used in basketball to describe a player’s high 
foul total. In NBA players are allowed up to 6 fouls per game. After they exceed that 
they are forbidden to participate for the rest of the game. NBA coaches usually will 
put a player on the bench when he commits too many fouls early in the game (2 or 
more in first quarter, 3 or more in second quarter, etc). This obviously can cause a 
drop on player’s minutes and consequently in the fantasy points that they will score. 
Even though there are some patterns that can be used to determine whether a player is 
on risk of getting in foul trouble, like which team they face, which position they play 
(Centers tend to get in foul trouble easier), we ignored this factor in our predictions.  
 

 The last factor, overtime, is also completely unpredictable. Overtime or extra time is 
an additional period of play specified under the rules of a sport to bring a game to a 
decision and avoid declaring the match a tie or draw where the scores are the same. 

So in order to predict the minutes an athlete would play we focused on blowout factor. To 
predict weather or not a game could go to “blowout” resulting in les minutes played for the 
core players, we used betting lines. The spread, or line, is a number assigned by the 
bookmakers which handicaps one team and favors another when two teams play each other 
and one is perceived as being more likely to win. The favorite "takes" points from the final 
score and the underdog "gives" points. For example if team A which is ranked 1 on the NBA 
standings table  plays a home game versus team B which is ranked 30, the betting line could 
be something similar to +15 for team A. This means that if somebody bets on team A to win, 
team A needs to win by more than 15 points. Similarly, betting on team B to win would be 
successful if team B doesn’t lose by more than 15 points. 

We downloaded all betting lines from www.covers.com for 2015-2016 NBA regular season. 
Then we got the average minutes played of NBA players from last 3 games and adjusted them 
based on the betting lines. If the betting line for one game was equal or lower than +5 then 
minutes stayed the same. If the betting line was at 5.5 I multiplied player’s minutes by 96%. 
For example if a player averaged 40 minutes per game in his last 3 games and the betting line 
for his next game was +5.5, his new projected minutes are 38.8. For every additional +1 in the 
betting line I lowered the multiplier by 1. It can be explained better with pseudo code: 



 

  

 

If betting line  <  5  

 Projected player minutes for the next game = average minutes in the last 3 games 

  Else If betting line > 5 

 Projected player minutes for the next game = average minutes in the last 3 games 

  Else if betting line = 5.5 or 6  

 Projected player minutes for next game = average minutes in the last 3 games *96% 

  Else if betting line = 6.6 or 6.5 

 Projected player minutes for next game = average minutes in the last 3 games *95% 

  Else if betting line = 7 or 7.5  

 Projected player minutes for next game = average minutes in the last 3 games *94% 

…… 

etc. 

 

4.3 Developing a prediction model 
 

After constructing the dataset we started creating the prediction model. The model would start 
predicting after the fifth game of the season. The reason behind that is the lack of relevant 
data at the first games of an NBA season. When an NBA season starts, teams might have an 
entirely different roster compared to last season, new coach, new playbooks, etc. Moreover 
the time period between the last NBA regular season game and the first game of the next 
season is around 6 months. In those 6 months players can develop new skills and improve or 
decline due to age. All of the above make it impossible to predict accurately enough a 
player’s performance of the first games of the season based on last year’s performance.  

We used two different players, LeBron James and Aaron Gordon and we tried the following 
regression models on them in order to find the one that generates the best results: 

  
Linear Regression: Linear regression model performed decent on training and testing 
dataset. But when used on unseen data, it didn’t produce optimal results. 

 SVR with polynomial and RBF kernel: SVR’s prediction was always the same 
number for training set and validation set. Both kernels generated a number and used 
it as prediction for any kind of data they were asked to predict. 

 Random Forest Regression: Random forest regression was the method that produced 
the best results compared to the others, both in training and validation data. We ended 
up using the Random Forest method for our model. 



 

  

 Bayesian Regression: Bayesian ridge regression was the method which produced the 
second best results. The results were acceptable but not as good as those produced by 
Random Forest Regression. 

Starting our code, the first step was to create the dataset. We created a loop that reads every 
CSV file from a directory and read them 1 by 1. 

path = "C:\\CSVlist\\" 

filenames = glob.glob(path + "/*.csv") 

for infile in glob.glob( os.path.join(path, '*csv') ): 

Then using pandas, we read the CSV file and created a data frame with it. Our dataframe had 
ten columns: Date (date that the game was played), Rebounds, PTS (number of points that the 
athlete scored in that game), Assists, Steals, Blocks, DFS (the daily fantasy score), MP (the 
minutes the athlete played) and Salary (the fantasy cost of the athlete). 

Next we defined the features and the target. The features consisted of Rebounds, Steals, 
Assists, Blocks, MP and PTS columns and the target was the DFS. So we excluded the first 
six games of the season and started predicting from the seventh. The code for defining our 
features includes a for loop that makes sure the model doesn’t “cheat” by reading the statistics 
of the player on the date it’s predicting. This loop concatenates the statistical values ( PTS, 
FG, FGM, etc) from 6 games before the game that the model predicts and defines them as 
features. The code for this is the following: 

forecast_col = 'DFS' 

df333['label'] = df[forecast_col] 

data = np.array(df333.drop(['Date','Position',’DFS’],1)) 

X = np.empty( [len(data)-6,6*len(data[0])] ) 

    for i in range(0, len(data)-6): 

        if i > len(data) - 1: 

          break   

           

        result = np.array(data[i]) 

        for j in range(1,6): 

          result = np.concatenate((result,data[i+j])) 

        X[i] = result 

y=labels[6:] 



 

  

We also excluded 1 single game which was going to be used for validation and also for our 
test runs. User can set a date which won’t be used for training or testing and later predict the  
outcome of this date based on model’s training: 

dfval=df.loc[:30917].tail(7) 

dfval= df[df.index != 3917] 

Given the value 30917 for dfval, the game for 9th of March 2017, will be excluded from 
training and testing dataset. 

After splitting our data, we performed cross validation. We used the following parameters in 
order to find out which would return the best results: 

 N estimators: 15 to 350 
 Max features: 3 to 50 

 Max depth: 10 to 60 

 Minimum sample split: 2 to 40 

 Bootstrap: True or False 

The parameters we ended up using after performing cross validations are the following: 

 N estimators: 50 
 Minimum sample split: 2 

 Max features: 7 

 Max depth: 22 

We used those parameters for every player during our tests. Ideally we would run cross 
validation again before we predict a player’s fantasy score. But cross validation required 
nearly 10 hours to test every parameter, even on a computer with latest generation CPU, for 
just one player. Moreover sklearn doesn’t provide the option to use GPU in order to increase 
processing time. 

After completing the training of our model we tested it on validation data. We create a new 
dataframe which contained the game from the date we set before as dfval and the 6 dates 
before that particular date. We set our features and target the same way as before and we 
predict our new unseen data. 

Having our predictions ready we wrote the results in a CSV file along with player’s name, 
position and salary. This CSV file will be used later for our optimizer in order to generate a 
lineup. 

dffinal=dfnew[(dfnew['Date']== 30917)] 

dffinal.reset_index(drop=True, inplace=True) 

dffinal2=dffinal.drop(['Date',"PTS","RB",'Assist','Blk','Steals','DFS','MP','label'],1) 

dffinal2['filename'] = [df123] 

dffinal3=pd.concat([dffinal2,ss],ignore_index=True,axis=1) 



 

  

dffinal3.columns=['Position','Salary','Name','Pred'] 

dffinal3['Pred'] = dffinal3['Pred'].apply(lambda x: round(x,1)) 

dffinal3 = dffinal3[['Name','Position','Salary','Pred']] 

 dffinal3.to_csv('dffinal',mode='a',index=False, header=None) 

Image 7 shows the form of our final CSV file 

 

Image 7. Produced CSV file 

 

5.3 Lineup Optimization 
 

Predicting the fantasy score of the players through a machine learning model was the main 
focus of this thesis. But in order to test our predictions in actual daily fantasy contests, we had 
to choose 8 players which would constitute our lineup. For this purpose we developed an 
algorithm which based on our predictions, creates the best possible combination of 8 players 
for any given contest. 

Any lineup that is submitted in a draftkings contest has to fulfill the following constrains: 

 The lineup has to include at least 1 player who is eligible for PG (Point Guard) 
position. 



 

  

 The lineup has to include at least 1 player who is eligible for SG (Shooting Guard) 
position. 

 The lineup has to include at least 1 player who is eligible for SF (Small Forward) 
position. 

 The lineup has to include at least 1 player who is eligible for PF (Power Forward) 
position. 

 The lineup has to include at least 1 player who is eligible for C (Center) position. 

 The lineup has to include at least 1 player who is eligible for F (Forward) position. 

 The lineup has to include at least 1 player who is eligible for G (Guard) position. 

 The total amount of salary for each lineup has to be below 80.000.000 $ 

So our algorithm had to maximize the value of our lineups (fantasy points) while taking into 
account these constrains.  

The input data for our algorithm are all the NBA players available for selection in the current 
date. We place the athletes into a set called A. Then we divide the set to multiple sets based 
on the athlete’s position. All NBA players who are eligible for Point Guard position are 
members of subset P, all shooting guard are members of subset S, all small forwards are 
members of subset M, all power forwards are members of subset P and all centers are 
members of the subset C. At the same time all shootings guards and point guards are members 
of the subset G and all small forwards and power forwards are members of the subset F. We 
can describe the input data better like this: 

A = {a1,….,an}, which is the set of all NBA players available 

N  A 

S  A 

M  A 

P  A 

C  A 

G  P,S 

 F  M, P 

Si = the salary of the athlete ∀ i  A 

μi= the predicted fantasy points  ∀ i  A 

Every NBA player available has also a binary decision variable which represents whether or 
not the player is selected for the lineup. The variable xi is equal to 1 if the player is selected 
and equal to 0 if the player is not selected. 

𝑋𝑖 =
1 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑙𝑎𝑦𝑒𝑟 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑓𝑎𝑛𝑡𝑎𝑠𝑦 𝑡𝑒𝑎𝑚

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ∀ i  A 



 

  

Mathematically the above problem can be described like this: 

Maximize ∑     μixi  

Subject to: 

∑    xi = 1 

∑    xi =1 

∑    xi = 1 

∑    xi = 1 

∑    xi = 1 

∑    xi = 1 

∑    xi = 1 

∑           xi = 7 

∑    xi Si ≤ 80.000 

Χi є {0,1}n  for all i є A 
 

 

 

 

 

 

 
 



 

  

5  

Evaluation 
 

 

To evaluate the results of the prediction model we took into consideration the following: 

The goal of this model isn’t to achieve 100% accuracy on predictions. That would be nearly 
impossible. The goal is to create predictions which when used, can generate lineups that will 
return a profit in the long term. There are 3 important things that make a prediction model for 
DFS sports successful: 
 

Spotting undervalued players: As we mentioned in chapter 1, in DFS users have a certain 
amount of resources to spend in order to create a lineup. Every athlete has a different value 
which depends on his average fantasy performance. Finding players who can score more than 
their salary value, it’s crucial for a lineup’s success. For example if player A costs 7,000$ and 
scores 35 fantasy points and player B costs 3,500$ and scores 30 fantasy points, player B is 
considered a value pick. Spotting those low cost players who can score more fantasy points 
than they are expected to its crucial for a line up’s success. 

Ability to spot extraordinary performance: It is really important for a lineup to include 
undervalued players who will score higher than expected. But at the same time including an 
expensive player who will score an extremely high fantasy score can be eough to guarantee a 
win.   

We also mentioned before that our focus will be on cash games and not on GPP games. 

 

5.1 Assessment parameters 
 

To evaluate the model, we tested it on random dates of 2016-2017 NBA season and compared 
the predictions with the actual results. With a bit of research in online fantasy communities 
we can see that a score above 280 will almost always ensure a win 
(https://rotogrinders.com/threads/average-fanduel-nba-scores-required-to-cash-in-h2h-or-
183106 , 
https://www.reddit.com/r/dfsports/comments/2o8i68/what_score_should_you_typically_aim_
for_in ). Of course that can vary from day to day. In certain contests, the score to actually win 



 

  

in cash games could be higher. But still a score on the range we mentioned is a good indicator 
of whether a lineup will be successful.  

 

Image 8. Fantasy score required to win a Draft kings cash game in the span of 60 days 

Image 6 illustrates the fantasy scored required to win a Draft kings cash game in the span of 
60 days. Out of 60 days there were only 4 instances that a lineup of 300 fantasy score 
wouldn’t translate into profit and a total of 16 instances where a 280 fantasy score wasn’t 
enough. This means that if our model generated lineups that can hit our target score (280) we 
would win 44 out of 60 contests. Calculating the actual profits, $100 double up contests have 
an entry fee of 100$ and a prize of 185$ for the top 50% participants. In order to enter 60 
different contests in the span of 60 days we would need 6,000 $. By winning 44 of them we 
would have 8,140$ by the end of the 60th day, which is 2,140$ profit on our original 
investment. 

We also compared our results with projections and lineups from www.fantasy-cruncher.com. 
Fantasy cruncher is a website which provides projections for daily fantasy sports and also a 
line up optimization software.  They charge 49.95 USD per month. Even though predictions 
are not fantasy cruncher’s main feature, the comparison with our model can help us draw 
useful conclusions. 

5.2 Tests 
 

The first date we tested was 2nd of March 2017. There were 3 different games available, 6 
teams and a total of 68 players. We run our prediction model on those players and gathered 
the results in a CSV file with the following format: 



 

  

Al-Farouq Aminu ,SF,5700,25.7,0 

Alex Abrines ,SG,3000,12.5,0 

Alex Len ,C,4100,15.6,0 

Each line of the CSV contained the name of the player, his position, his DraftKings salary and 
his projected fantasy points. The zero after the last comma indicates whether a player is going 
to be included in the lineup. If the value after that last comma is -1 the player will be excluded 
from the projected lineup and if its 1 the optimizer will be forced to include that player.  

Next we run the CSV through our lineup optimizer, getting the following results: 

 

Image 9. Generated lineup for 2/3/2017 

Our model predicted a fantasy score of 276 and our line up actually scored 293 fantasy points. 
With our first test we managed to reach our target of 280 fantasy points. Our model managed 
to predict the extraordinary fantasy performance of Russell Westbrook despite predicting that 
he will score 7.8 more fantasy points. On Cody Zeller our model had almost 100% accuracy, 
miscalculating his performance by only 0.5 fantasy points. On Nurkic’s case, the 20 fantasy 
points difference between his actual score and our predicted fantasy score, didn’t affect our 
final results. Due to his low salary (5600), a fantasy score of 35.7 points was enough for our 
optimizer to include him in the generated lineup. 

The next date we used for testing was 7th of March 2017. There were again 3 games available, 
6 teams and a total of 68 players. 

 



 

  

 

Image 10. Generated lineup for 7/3/2017 

 

 

Running our model and our optimizer we got the above lineup with a predicted score for 259 
fantasy points and an actual score for 292.5 fantasy points. Same as our last test, we managed 
to reach our goal of 280 fantasy points despite the prediction accuracy being low. 

Our model had the most success with Clarkson’s prediction, missing his actual score by only 
0.1 fantasy points. It appears that our model undervalued Randle’s and Russell Westbrook’s 
fantasy performance but at the same time the predictions were high enough to indicate that 
they are worth including in a lineup.  

Our next testing date was 13th of March 2017. This time there were 8 NBA games available, 
with 16 teams and 192 players. 

 

Image 11. Generated lineup for 13/3/2017 



 

  

 

Image 12. Fantasy Cruncher’s lineup for 13/3/2017 

 

This time even though the total fantasy score of our lineup was only 7 fantasy points lower 
than the fantasy score our model predicted, we didn’t manage to reach our goal of 280 fantasy 
points. Wall’s difference between his predicted and actual score is the most noticeable. 
Looking at Wall’s last 6 games, he averaged 54.13 fantasy points per game which can explain 
our model’s prediction. He also averaged 48.8 fantasy points in his next 8 games. 

Paul Millsap scored only 29.25 fantasy points, 11 less compared to our model’s prediction, 
despite playing for 40 minutes. At the same time he scored over 37 fantasy points in his last 8 
games, playing below 40 minutes in all of them. 

Image 12 shows fantasy cruncher’s lineup for that particular date. In comparison with our 
lineup, fantasy cruncher’s lineup scored 5 points lower but the difference in their prediction 
score and actual score was a lot higher.  

For our next date, 31th of March 2017, there were 8 NBA games, with 16 teams and 192 
players available. 



 

  

 

Image 13. Generated lineup for 31/3/2017 

Our model’s performance wasn’t good enough to reach our target fantasy score. There was a 
significant difference between the predicted score and actual score (14 fantasy points). 
Moreover the inaccurate predictions of Mason Plumlee’s and James Harden’s performance 
resulted in inefficient use of our available salary. Even Aaron Gordon’s 62.5 fantasy points 
for only 5,400$ wasn’t enough for our lineup to reach our target score. 

Our 5th test date was April 1 2017, with 5 NBA games, 10 teams and 120 players available. 

 

Image 14. Generated lineup for 1/4/2017 



 

  

 

Image 15. Fantasy Cruncher’s lineup for 1/4/2017 

 

As we can see in the image above, our lineup reached our target of 280 fantasy points. Once 
again the total actual score was significantly higher than the predicted score, mainly because 
of the inaccurate prediction on Jordan Clarkson’s and Elfrid Payton’s performance. For 5 out 
of 8 players the difference between the actual score and the predicted score was below 5 
fantasy points, which can be considered quite successful. 

Comparing our prediction to fantasy cruncher’s predictions, our lineup again had a better 
actual score while fantasy cruncher’s lineup didn’t even reach the target of 280 fantasy points. 

 

Until now we tested our model in the late stages of NBA 2016-2017 regular season. This 
means that our model had more than 50 games to use for training and testing. For the next two 
tests we used dates from December of 2016, so our model had only around 20 games 
available for training and testing. 



 

  

 

Image 17. Generated lineup for 6/12/2016 

 

In this test, for 6/12/2016, we reached our target of 280 fantasy points and the difference 
between the total actual score and the predicted score of our lineup was 12 fantasy points. The 
most noticeable results are John Wall’s and Andrew Wiggin’s predictions. In the first case 
John Wall scored 75.5 fantasy points with a prediction of 48.3 fantasy points. Once again, the 
lower than actual score prediction on John Wall’s fantasy points, wasn’t enough to hurt our 
results. On the other hand the salary spent on Andrew Wiggins could be used more efficient 
on some other player considering that his salary cost was 6,000$. For the rest of the players 
the results could be considered adequately based on the fact that the difference between the 
predicted and the actual fantasy score was lower than 5 fantasy points in 5 of the total 8 
players. 

In the next 2 tests our lineup reached our target score in one case with 287.5 fantasy points 
and only scored 270 fantasy points in the other. The results can be seen in images 18 and 19. 

 

Image 18. Generated lineup for 19/12/2016 

 



 

  

 

Image 19. Generated lineup for 14/2/2016 

 

 

 

5.3 Testing with manual tweaks 

In daily fantasy sports players have the option to modify their submitted lineups until 5 
minutes before the first NBA game starts. This allows for last minutes tweaks based on news 
about player’s availability, injury, etc. 

When a starter NBA player is unavailable for a game, there is a significant amount of minutes 
that will be allocated to the rest of the team. This means that there will always be a player 
who will see a significant increase in his minutes and in most cases to his fantasy 
performance. When we generate a lineup using our model we can exclude an injured or 
unavailable player. But at the same time our model doesn’t change the predicted score on the 
player that will take the injured player’s place and minutes. To compensate that we can study 
some statistics like a team’s statistics when X player is missing, to draw useful conclusions 
about possible increase or decrease on the fantasy performance of the rest of the team. Based 
on those statistics, we can extract information about specific players who will potentially 
benefit from X player’s absence and “force” the optimizer to include that player in the 
generated lineup. 

For the next tests we generated 2 lineups for each date. In the first lineup we let the optimizer 
choose the optimal lineup based on our model’s predictions similar to the previous tests. For 
the second lineup we checked injured or rested players whose absence was reported before 
the contests started. Then we checked the statistics of the rest of the team while that player is 
not playing. If there was a player who benefited statistically from the injured player’s 
absence, we forced our optimizer to include him in the lineup. 

We tested our model at 23rd of January 2017. For that date Kawhi Leonard, Chris Paul and 
Blake Griffin weren’t available due to injury or rest as reported by rotoworld.com.  



 

  

 

Image 20. www.rotoworld.com Injury Reports for 23 January 2017 

In the image 21 we can see San Antonio Spur’s statistics when Kawhi Leonard isn’t playing. 



 

  

 

Image21.San Antonio Spurs statistics when Kawhi Leonard isn’t playing 

We notice that Kyle Anderson has a significant increase in his fantasy points, plays the same 
position as Kawhi Leonard and at the same time his salary is quite low. That can potentially 
qualify him as an undervalued player by DraftKings. Kyle Anderson 2.900$ salary reflects his 
performance when Kawhi Leonard is available for the Sun Antonio Spurts.  

In the image 21 and we can see Los Angeles Clippers’ statistics when Blake Griffin and Chris 
Paul are not not playing.  



 

  

 

Image 22. Los Angeles Clippers statistics when Chris Paul isn’t playing 

 

Image 23. Los Angeles Clippers statistics when Blake Griffin isn’t playing 

We notice that Austin Rivers and Jamal Crawford have the highest increase in fantasy points, 
play the same position as Chris Paul and at the same time their salary is quite low In relation 
to their average fantasy points.  

While testing our model for 23 January 2017 we used the above information and we forced 
our optimizer to include a particular player. 



 

  

 

Image 24. Generated lineup for 23/1/2017 

 

Image 25. Fantasy Cruncher’s lineup for 23/1/2017 

 

For our first lineup we included Austin Rivers and Kyle Anderson. As we can see Kyle 
Anderson scored 28.75 fantasy points, which is 20 more than what our model predicted but 
it’s almost exactly the fantasy score that he averages when Kawhi Leonard isn’t playing. 
Moreover his salary cost was only 3,000$. Austin River’s prediction was already a bit high 
compared to his usual fantasy numbers, due to Chris Paul’s 2 weeks absence. But for this 



 

  

game Clippers would play without Blake Griffin. This resulted in Austin Rivers scoring 41.5 
fantasy points. 

Beside our tweaks our model performed great overall, with Jeff Teague’s prediction being the 
only one with low accuracy. This lineup hit our target of 280 fantasy points and would most 
likely enter the prize pool in a cash game contest on DraftKings. Fantasy cruncher’s optimizer 
produced a lineup that scored quite low fantasy points 

We generated one more lineup for the same date but this time we included Jamal Crawford 
instead of Austing Rivers. 

 

Image 26. Second generated lineup for 23/1/2017 

Our second generated lineup reached our target score as well, with Jamal Crawford scoring 
exactly the fantasy points he averaged in games where Chris Paul was not playing. 

For 27th of January 2017 we generated two line ups. One without any player preference and 
one with Normal Powell included. Image 27 shows Demar DeRozan’s injury report prior to 
the game start and image shows 29 Normal Powell’s fantasy points when DeRozan is not 
playing. 

 

Image 27. DeMar Derozan’s Injury report by www.rotoworld.com 



 

  

 

Image 29. Toronto Raptors statistics when DeRozan isn’t playing 

 

Image 30. First generated lineup for 27/1/2017 

 

Image 31. Second generated lineup for 27/1/2017 



 

  

In the first lineup we run the optimizer without any player preferences. In the second run we 
forced the optimizer to include Norman Powell in the lineup. Both lineups exceed our target 
score. In both cases the accuracy of our model was quite decent, without any major mistakes 
in individual predictions.  

We run our last test for the NBA games played at 9 March 2017. At that date Kevin Love, 
power forward of Cleveland Cavaliers was injured and would not participate at the upcoming 
game as reported by rotoworld.com. 

 

Image 32. Kevin Love injury report 

The player who benefits the most when Kevin Love is not playing is power forward Channing 
Frye, as seen in the image 33. 

 

 

Image 33. Cleveland Cavaliers statistics when Kevin Love is not playing 



 

  

Once again we generated two lineups, one without restrictions and one with Fry included. 
Images 35 and 36 show the results 

 

Image 35. First generated lineup for 9/3/2017 

 

Image 36. Second generated lineup for 9/3/2017 

 

In this case we actually had better results without adding any player restrictions, even though 
Frye scored 10 more fantasy points above his average when Kevin Love isn’t playing. At the 
same time the second lineup had better accuracy on individual predictions, with only Chris 
Paul’s prediction being more than 5 fantasy points different than his actual score. 

6.4 Evaluation of tests 

We tested our model in 12 different dates of 2016-2017 NBA regular season. We set a target 
score of 280 fantasy points which according to our research, is the lowest score required to 
enter the prize pool in DraftKings’ cash game contests. Moreover we combined our 
predictions with minor tweaks based on information that can be found online in order to 
further improve the results. In 9 out of 12 test cases our generated line up reached our target 
of 280 fantasy points. 



 

  

 

Image 37. Fantasy score for each date tested 

In general our model seems to be able to correctly predict the performance of the average 
NBA player with quite decent accuracy. Our model struggled to produce the optimal results in 
cases that a player either underperformed or overperformed compared to his recent fantasy 
performance in an extreme way. In most cases that didn’t hurt our results because of the 
correct predictions on the rest of the players. 

  



 

  

6 
Technical details 
 

 

This section will present and analyze the technical details of the algorithms used in this thesis. 
We will describe how our web scrapper and lineup optimizer works. Technical details about 
our model were described in chapter 5 so won’t be presented here. 

6.1 Web Scrapper 
 

In order to collect our data and construct the dataset we built a web scraper which reads 
player’s data from www.dfsgold.com and writes them into a CSV file. The web scraper was 
built in python 3+. The libraries we used were: 

 Pandas 0.20: Pandas is a python library used for data manipulation and analysis. It 
aims to be the fundamental high-level building block for doing practical, real world 
data analysis in Python. 
 

 Beautiful Soup: Beautiful Soup is a Python library for pulling data out of HTML and 
XML files. It works with any parser and helps providing idiomatic ways of 
navigating, searching and modifying the parse tree. It basically presents the parsed 
data in a more human-friendly form. 
 
 

 Request: Requests allows users to send HTTP/1.1 requests, without the 
need for manual labor. There's no need to manually add query strings to URLs, or to 
form-encode the POST data. 
 

The scrapper starts by reading a txt file which contains the URLs of the players that we want. 
It loops through every line of that txt file. The code is shown below: 

with open("ur.txt","r") as fh: 

    for lines in fh: 

        lines = lines.rstrip() 



 

  

Considering that the data we want to grab is already in a table format as illustrated at the 
image 38, we can just add that table contests in a dataframe using pandas library. 

dfs = pd.read_html(lines) 

 

Image 38. Player statistics page from www.DFSgold.com 

Next we remove the commas (,) in the salary columns because we will use commas as 
separator in the CSV file. Moreover we sort the dataframe by date in an ascending order.  

 

pd.to_datetime(df.Date).order().index 

df=df.ix[pd.to_datetime(df.Date).order().index] 

 df['Salary'] = df['Salary'].str.replace(',','') 

 

The next step is to remove any data we won’t use. This step could potentially be skipped and 
clear the data while creating the dataset but we had already decided which statistical 
categories we would use. 

data = df.drop(['Opp',"C/Fpt","FGM-FGA","3PM-3PA"],1) 

data = data[["Date","Pts","Rebs","Ast","Stl","Blk","Fpts","Mins","Salary"]] 

Even though our data is ready we still needed to get the player’s name in order to use it later 
for naming our CSV file. Using request and beautiful soup libraries, we get the name of the 
player as shown in the image 39.  



 

  

 

Image 39. Name of the player 

Moreover we removed the all the texy after the first | character. Finally we wrote our data to a 
CSV file and used player’s name as file name. 

            

            r =requests.get(lines)  

            soup = BeautifulSoup(r.content) 

            for table in soup.find_all('h2', attrs={'class': 'page-title pull-left'}): 

                print(1)             

            filename=table.text 

                              

            filename=filename.split('|', 1)[0] + '|'     

            filename=filename.replace('|', '') 

            data.to_csv(filename+".csv", sep=';',index = False) 

 

6.2 Lineup Optimizer 
 

The focus on this thesis was to predict certain values (player’s fantasy score) using machine 
learning models. But in order to test the result and make the predictions usable, a lineup 
needed to be created based on those predictions. This lineup consisting of 8 NBA players, 
have to fulfill a number of constraints in order to be eligible for submission in upcoming 
contests. This kind of problem is called Knapsack problem. 

In Knapsack problem the goal is to maximize  ∑ 𝜈𝑖𝑥𝑖 , subject to  

∑𝑵
𝐢 𝐥 wix I ≤  W, xi  ≥ 0 

and x i integer (or x i binary), for i =1 , 2, …., N; where νi , w i and W are known integers and w 

i  ( i = 1,2,….N) and W are positive. 

 



 

  

In programming, this problem can be solved using a dynamic programming algorithm by 
computing the optimal value given a list of items with values and weights, and a maximum 
allowed weight. In our case we had to choose the 8 players with the best values while taking 
into account the following constraints: 
 

 The total amount of salary can’t be more than 50.000 $ 

 There has to be at least 1 player who’s eligible for point guard position (PG) 

 There has to be at least 1 player who’s eligible for shooting guard position (SG) 
 There has to be at least 1 player who’s eligible for small forward position (SF) 

 There has to be at least 1 player who’s eligible for power forward position (PF) 

 There has to be at least 1 player who’s eligible for Center position (C) 

 There has to be at least 1 player who’s eligible for either point guard or shooting 
guard position (G) 

 There has to be at least 1 player who’s eligible for either small forward or power 
forward position (F) 
 

Looking at the python code we got 2 classes and 4 functions. The player class defines the 
characteristics for each player. Each player has a name, 1 or more positions (pos), a salary 
(cost) and a projected value. 
 
class player: 
    cost = 0 
    projected_value = 0 
    name = "" 
    pos = [0, 0, 0, 0, 0] 
 
    def __init__(self, c, pro_val, name, possible_positions, force_include): 
        self.cost = c 
        self.projected_value = pro_val 
        self.pos = possible_positions 
        self.name = name 
        self.include = force_include 
 
 
Class entry checks the constraints for every player that is added to the list and calculates the 
new values 
 
class entry: 
    def __init__(self, past_entry, new_player, index): 
        self.value = -1 
        self.cost = -1 
        self.cur_spots = [1, 1, 1, 1, 1, 1, 1, 1, 1] 
        self.player_list = [] 
        self.past_index = -1 
 
        if (past_entry is None): 
            if (index == -1): 
                return 
            else: 
                self.value = new_player.projected_value 
                self.cost = new_player.cost 



 

  

                self.past_index = index 
                self.player_list.append(index) 
                return 
 
 
        self.value = past_entry.value + new_player.projected_value 
 
        self.cost = past_entry.cost + new_player.cost 
        self.past_index = index 
 
        for i in range(9): 
            self.cur_spots[i] = past_entry.cur_spots[i] 
 
 
        for i in past_entry.player_list: 
            self.player_list.append(i) 
 
        self.player_list.append(index) 
 
 
Function get_player_list reads the CSV file that contains our data. Next it appends players in 
groups of 8, creating every combination possible.  
 
def get_player_list(possible_name): 
 
 
    file_name = 'dffinal.csv' 
 
    player_list = [] 
    with open(file_name) as csvfile: 
        reader = csv.reader(csvfile, delimiter=',') 
        reader.next() 
        for row in reader: 
            if (int(row[4]) == -1): 
                continue 
 
            name = row[0] 
            pos_p = get_possible_positions(row[1]) 
            c = row[2] 
            v = row[3] 
            my_p = player(int(c) / 100, float(v), name, pos_p, int(row[4])) 
 
            player_list.append(my_p) 
 
    return player_list 
 
 
Function find_best_player is the main function of the code. After reading the list of all 
possible combinations, it checks which combinations actually fit our criteria and then prints 
the one with the best value, which is the combination with the highest total fantasy score. 
 
def dp_find_best(player_list, aflag): 
    score_table = [] 
 
    force_list = [] 



 

  

 
    for p in range(len(player_list)): 
        if (player_list[p].include == 1): 
            force_list.append(p) 
 
    for cost_max in range(501): 
        col = [] 
        for play_num in range(9): 
            best_index = -1 
            best_score = -1 
            break_afterwards = False 
            for player in range(len(player_list)): 
 
                if (play_num < len(force_list)): 
                    player = force_list[play_num] 
                    break_afterwards = False 
 
                if (player_list[player].cost > cost_max): 
                    if (break_afterwards): 
                        break 
                    continue 
 
                potential_score = -1 
                if (play_num != 0): 
                    if (score_table[cost_max - player_list[player].cost][play_num - 1].value > 0): 
                        potential_score = score_table[cost_max - player_list[player].cost][play_num - 
1].value + \ 
                                          player_list[player].projected_value 
                    else: 
                        potential_score = -1 
                else: 
                    potential_score = player_list[player].projected_value 
 
                if (potential_score > best_score): 
                    if (play_num == 0): 
                        best_score = potential_score 
                        best_index = player 
                        if (break_afterwards): 
                            force_list.pop() 
                            break 
 
                        continue 
 
                    if (add_player_possible(score_table[cost_max - 
player_list[player].cost][play_num - 1], 
                                            player_list[player], player)): 
                        best_score = potential_score 
                        best_index = player 
 
                if (break_afterwards == True): 
                    force_list.pop() 
                    break 
 
            if (cost_max > 0 and score_table[cost_max - 1][play_num].value > best_score): 
                col.append(score_table[cost_max - 1][play_num]) 



 

  

            else: 
 
                if (best_score == -1): 
                    col.append(entry(None, None, -1)) 
                elif (play_num == 0): 
                    col.append(entry(None, player_list[best_index], best_index)) 
                else: 
 
                    col.append(entry(score_table[cost_max - player_list[best_index].cost][play_num 
- 1], 
                                     player_list[best_index], best_index)) 
 
 
 
  



 

  

 

7 
Conclusion 
 

 

In this chapter we will present the conclusion of this project and sum up the success rate of 
our model. We will also describe the ways that the model can be improved in the future. 

7.1 Outline and conclusions 
 

 

This thesis was an attempt to find possible applications of machine learning in daily fantasy 
sports. The growing popularity of daily fantasy sports along with them being a relative new 
and unexplored domain, made fantasy sports an interesting field to apply machine learning 
principles and techniques. Moreover the goal of fantasy sports, which is to select a high 
scoring line up, make them ideal for applications of prediction models. 

Our goal was to create a model which would generate NBA lineups with potential to stay 
profitable when submitted in daily fantasy contests. We focused on NBA cash games because 
they are considered easier to predict in comparison with other sports like baseball and 
American football and GPP contests. Moreover due to the different scoring format on daily 
fantasy sites, our lineups would be suitable for draftkings only. But with some minor tweaks 
in the database it can be used for any daily fantasy website.  

To evaluate our success we set a target score and also compared our results with paid services 
which offer daily fantasy sports predictions. We avoided testing our lineups in real time 
contests on draftkings due to the large amount of money that would be required to actually 
submit a big amount of lineups. But we provided evidence that reaching our target score on 
any given lineup would translate into profits in the long run. 

Our model managed to reach the target score on the majority of dates that was tested, even on 
cases which the prediction on certain players was way off their actual score. At the same time 
it produced way better results than some websites that offer fantasy sports predictions. We 
believe that using our model combined with some basic human insight can result into profits 
for a daily fantasy sports player. 

 



 

  

7.2 Future work 
 

We developed our model while focusing on only one sport, one type of contest and one 
website. Adjusting the model for other websites would be quite simple, but a different sport 
like American football or even a different type of contest for the same sport would require a 
whole different approach. Basketball is considered quite easy to predict with the lowest 
amount of variance compared to other sports. We believe that developing a model for another 
sport would require a huge amount of time and resources and still the results would not be as 
good. The same applies for GPP contests. 

As we mentioned, the minutes a player is going to play have a huge impact in his fantasy 
score. We tried to predict those minutes using player’s average minutes in last games 
combined with betting lines, which is a method a lot of experienced fantasy players use. Even 
though the results were decent there is still room for improvement and more automation in 
this area. Reading and analyzing Twitter feeds, taking into consideration the time span 
between player’s last games could improve the accuracy of predicted player minutes. Those 
examples could be even used for developing a machine learning model for minute 
predictions. 

Except from the minutes played there are a lot more factors that impact a player’s fantasy 
performance. There are measured statistics like the points allowed by a team for a specific 
position, team’s allowed points per minutes, the pace that a team plays (which usually results 
on more points scored), etc. These statistics can be implemented in our model and improve it 
even more. 

Daily fantasy sports it’s a competitive online game which constantly grows in popularity. 
Right now it is considered to be on early stages and there are a lot of new players joining 
every year. But as players become more experienced and the use of prediction models 
becomes the norm, winning a contest and stay profitable in the long term becomes harder. 
Moreover having a big starting capital to invest can give the player an advantage and 
minimize the risk. At the end of the day, even though winning in daily fantasy sports or 
games like poker require a certain amount of skill, it’s still a form of gambling which means 
luck will always be a big factor. 

  



 

  

8 
Annex 
 

8.1 Web Scrapper 
 

Requirements: 

 Pytthon 3.2+ 

 Request python library 
 BeatufiulSoup python library 

 Pandas python library 

Code: 

import requests 
from bs4 import BeautifulSoup 
import pandas as pd 
 
with open("ur.txt", "r") as fh: 
    for lines in fh: 
        lines = lines.rstrip() 
        print(repr(lines)) 
 
        dfs = pd.read_html(lines) 
 
        for df in dfs: 
            print(2) 
        d3 = len(df.index) 
        print (d3) 
        if d3 > 2: 
 
            pd.to_datetime(df.Date).order().index 
            df = df.ix[pd.to_datetime(df.Date).order().index] 
            df['Salary'] = df['Salary'].str.replace(',', '') 
 
            data = df.drop(['Opp', "C/Fpt", "FGM-FGA", "3PM-3PA"], 1) 
            data = data[["Date", "Pts", "Rebs", "Ast", "Stl", "Blk", "Fpts", "Mins", 
"Salary"]] 
 
            r = requests.get(lines) 
            soup = BeautifulSoup(r.content) 
            for table in soup.find_all('h2', attrs={'class': 'page-title pull-left'}): 



 

  

                print(1) 
            filename = table.text 
 
            filename = filename.split('|', 1)[0] + '|' 
            filename = filename.replace('|', '') 
            data.to_csv(filename + ".csv", sep=';', index=False) 
        else: 
            pass 
 

8.2 Prediction model 
Requirements: 

 Python 3.2+ 
 Pandas python library 

 Numpy python library 

 Sklearn python library 

 Glob python library 

 Os python library 

 CSV files have to be placed in directory : C:\\CSVfiles 

 

Code: 

import pandas as pd 
import numpy as np 
from sklearn import cross_validation 
from sklearn.ensemble import RandomForestRegressor 
import glob 
import os 
 
# read files 
path = "C:\\CSVfiles\\" 
filenames = glob.glob(path + "/*.csv") 
for infile in glob.glob(os.path.join(path, '*csv')): 
 
    names = ['Position', 'Date', "PTS", "RB", 'Assist', 'Blk', 'Steals', 'DFS', 'MP', 
"Salary"] 
    df = pd.read_csv(infile, names=names, error_bad_lines=False) 
 
    df123 = os.path.splitext(os.path.split(infile)[1])[0] 
    df.index = df["Date"] 
    df555 = df.loc[:3917].tail(7) 
    df333 = df[df.index != 3917] 
    df333 = df333.iloc[::-1] 
    forecast_col = 'DFS' 
    df333['label'] = df[forecast_col] 
    labels = df333[forecast_col] 
    data = np.array(df333.drop(['Date', 'Position'], 1)) 
 
    # define X and Y 
    X = np.empty([len(data) - 6, 6 * len(data[0])]) 



 

  

    for i in range(0, len(data) - 6): 
        if i > len(data) - 1: 
            break 
 
        result = np.array(data[i]) 
        for j in range(1, 6): 
            result = np.concatenate((result, data[i + j])) 
        X[i] = result 
 
    y = labels[6:] 
    X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.01) 
 
    # Randomf Forest 
    clfRFR = RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=22, 
                                   max_features=7, max_leaf_nodes=None, min_impurity_decrease=0.0, 
                                   min_impurity_split=None, min_samples_leaf=1, 
                                   min_samples_split=2, min_weight_fraction_leaf=0.0, 
                                   n_estimators=50, n_jobs=1, oob_score=False, random_state=None, 
                                   verbose=0, warm_start=False) 
    clfRFR.fit(X, y) 
    nn = clfRFR.predict(X_train) 
    n2 = clfRFR.predict(X_test) 
    yR_true, yR_pred = y_test, clfRFR.predict(X_test) 
 
    # linear 
    clfLNR = LinearRegression() 
    clfLNR.fit(X, y) 
    nnL = clfLNR.predict(X_train) 
    nl2 = clfLNR.predict(X_test) 
    yLNR_true, yLNR_pred = y_test, clfLNR.predict(X_test) 
 
    names = ['Postion', 'Date', "PTS", "RB", 'Assist', 'Blk', 'Steals', 'DFS', 'MP', 
"Salary"] 
 
    # datframe for validation 
    dfnew = df555 
 
    forecast_col2 = 'DFS' 
    dfnew['label'] = dfnew[forecast_col2] 
    df.dropna(inplace=True) 
    labels3 = np.array(dfnew['label']) 
 
    # define X and Y  
    data2 = np.array(dfnew.drop(['Date', 'Position'], 1)) 
    Xnew = np.empty([len(data2) - 6, 6 * len(data2[0])]) 
    for i in range(0, len(data2) - 6): 
        if i > len(data2) - 1: 
            break 
 
        result2 = np.array(data2[i]) 
        for j in range(1, 6): 
            result2 = np.concatenate((result2, data2[i + j])) 
        Xnew[i] = result2 
    ye = labels3[6:] 
    df5 = dfnew[['Salary', 'Date', 'Position']] 



 

  

    ss = pd.DataFrame(clfRFR.predict(Xnew)) 
    yLNR2_true, yLNR2_pred = ye, clfRFR.predict(Xnew) 
 
    # Set date and write to csv 
    dfdoul = dfnew[(dfnew['Date'] == 3917)] 
    dfdoul.reset_index(drop=True, inplace=True) 
    dfdoul2 = dfdoul.drop(['Date', "PTS", "RB", 'Assist', 'Blk', 'Steals', 'DFS', 'MP', 
'label'], 1) 
    dfdoul2['filename'] = [df123] 
    dfdoul3 = pd.concat([dfdoul2, ss], ignore_index=True, axis=1) 
    dfdoul3.columns = ['Position', 'Salary', 'Name', 'Pred'] 
    dfdoul3['Pred'] = dfdoul3['Pred'].apply(lambda x: round(x, 1)) 
    dfdoul3 = dfdoul3[['Name', 'Position', 'Salary', 'Pred']] 
    dfdoul3.to_csv('dffinal', mode='a', index=False, header=None) 
 

8.3 Lineup Optimizer 
Requirements: 

 Python 2.7 

 A CSV file named dffinal.csv with the format shown in the image 40 

 

Image 40. CSV file example for lineup optimizer 

Code: 

import csv 
import sys 



 

  

import getopt 
 
#create a class that defines player's attributes 
class player: 
    cost = 0 
    projected_value = 0 
    name = "" 
    pos = [0, 0, 0, 0, 0] 
 
    def __init__(self, c, pro_val, name, possible_positions, force_include): 
        self.cost = c 
        self.projected_value = pro_val 
        self.pos = possible_positions 
        self.name = name 
        self.include = force_include 
 
    def print_self(self): 
        print("%s, %f, %f" % (self.name, self.projected_value, self.cost)) 
 
#check the constraints for every player that is added 
class entry: 
    def __init__(self, past_entry, new_player, index): 
        self.value = -1 
        self.cost = -1 
        self.cur_spots = [1, 1, 1, 1, 1, 1, 1, 1, 1] 
        self.player_list = [] 
        self.past_index = -1 
 
        if (past_entry is None): 
            if (index == -1): 
                return 
            else: 
                self.value = new_player.projected_value 
                self.cost = new_player.cost 
                self.past_index = index 
                self.player_list.append(index) 
                return 
 
 
        self.value = past_entry.value + new_player.projected_value 
 
        self.cost = past_entry.cost + new_player.cost 
        self.past_index = index 
 
        for i in range(9): 
            self.cur_spots[i] = past_entry.cur_spots[i] 
 
 
        for i in past_entry.player_list: 
            self.player_list.append(i) 
 
        self.player_list.append(index) 
 
 
def add_player_possible(past_entry, new_player, player_index): 



 

  

    for current_player in past_entry.player_list: 
        if (current_player == player_index): 
            return False 
 
    player_position = -1 
 
    for i in range(5): 
        if (new_player.pos[i]): 
            player_position = i 
            break 
 
    if (player_position < 4): 
        start_index = player_position * 2 
 
        if (past_entry.cur_spots[start_index + 1]): 
            return True 
        else: 
            return False 
 
    else: 
        if (past_entry.cur_spots[8]): 
            return True 
        else: 
            return False 
 
 
def dp_find_best(player_list, aflag): 
    score_table = [] 
 
    force_list = [] 
 
    for p in range(len(player_list)): 
        if (player_list[p].include == 1): 
            force_list.append(p) 
 
    for cost_max in range(501): 
        col = [] 
        for play_num in range(9): 
            best_index = -1 
            best_score = -1 
            break_afterwards = False 
            for player in range(len(player_list)): 
 
                if (play_num < len(force_list)): 
                    player = force_list[play_num] 
                    break_afterwards = False 
 
                if (player_list[player].cost > cost_max): 
                    if (break_afterwards): 
                        break 
                    continue 
 
                potential_score = -1 
                if (play_num != 0): 
                    if (score_table[cost_max - player_list[player].cost][play_num - 1].value > 0): 



 

  

                        potential_score = score_table[cost_max - player_list[player].cost][play_num - 
1].value + \ 
                                          player_list[player].projected_value 
                    else: 
                        potential_score = -1 
                else: 
                    potential_score = player_list[player].projected_value 
 
                if (potential_score > best_score): 
                    if (play_num == 0): 
                        best_score = potential_score 
                        best_index = player 
                        if (break_afterwards): 
                            force_list.pop() 
                            break 
 
                        continue 
 
                    if (add_player_possible(score_table[cost_max - 
player_list[player].cost][play_num - 1], 
                                            player_list[player], player)): 
                        best_score = potential_score 
                        best_index = player 
 
                if (break_afterwards == True): 
                    force_list.pop() 
                    break 
 
            if (cost_max > 0 and score_table[cost_max - 1][play_num].value > best_score): 
                col.append(score_table[cost_max - 1][play_num]) 
            else: 
 
                if (best_score == -1): 
                    col.append(entry(None, None, -1)) 
                elif (play_num == 0): 
                    col.append(entry(None, player_list[best_index], best_index)) 
                else: 
 
                    col.append(entry(score_table[cost_max - player_list[best_index].cost][play_num 
- 1], 
                                     player_list[best_index], best_index)) 
 
 
        score_table.append(col) 
 
 
    print("The highest projected score is: %f" % (score_table[500][7].value)) 
 
    for p in score_table[500][7].player_list: 
        player_list[p].print_self() 
 
#define player positions 
def get_possible_positions(pos): 
    ps = [0, 0, 0, 0, 0] 
    if (pos == 'PG'): 



 

  

        ps[0] = 1 
    elif (pos == 'SG'): 
        ps[1] = 1 
    elif (pos == 'SF'): 
        ps[2] = 1 
    elif (pos == 'PF'): 
        ps[3] = 1 
    elif (pos == 'C'): 
        ps[4] = 1 
    else: 
        print("POSTION NOT POSSIBLE!!!!") 
 
    return ps 
 
#read the csv 
def get_player_list(possible_name): 
 
 
    file_name = 'dffinal.csv' 
 
    player_list = [] 
    with open(file_name) as csvfile: 
        reader = csv.reader(csvfile, delimiter=',') 
        reader.next() 
        for row in reader: 
            if (int(row[4]) == -1): 
                continue 
 
            name = row[0] 
            pos_p = get_possible_positions(row[1]) 
            c = row[2] 
            v = row[3] 
            my_p = player(int(c) / 100, float(v), name, pos_p, int(row[4])) 
 
            player_list.append(my_p) 
 
    return player_list 
 
 
def main(argv): 
    aflag = True 
    fflag = False 
 
    try: 
        opts, args = getopt.getopt(argv, "af:") 
    except getopt.GetoptError: 
        print ("python optimal_lineup.py -a -f <optional_file_name>") 
        sys.exit(2) 
 
    player_filename = "" 
 
 
    player_list = get_player_list(player_filename) 
 
    dp_find_best(player_list, aflag) 



 

  

 
 
if __name__ == "__main__": 
    main(sys.argv[1:]) 
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