
Σελίδα 1 από 102

BACHELOR OF SCIENCE FINAL THESIS

Linked Data on the Web

Student Supervisor

Anastasopoulos Theodoros Dimitris Ach. Dervos

ID: 06/ 303

Σελίδα 2 από 102

CONTENTS

ABSTRACT .. 4

1. INTRODUCTION, LINKED DATA O THE WEB ... 5

2. BASIC PRINCIPLES ... 6

2.1 Web Architecture .. 6

2.2. The RDF Data Model ... 11

3. CHOOSING HTTP URIs .. 15

4.WHICH VOCABULARIES SHOULD I USE TO REPRESENT

INFORMATION? .. 17

4.1 Reusing existing terms ... 17

4.2 How to define terms? .. 19

5. WHAT SHOULD I RETURN AS RDF DESCRIPTION FOR A URI 21

5.1 Authoritative Description ... 22

5.2 Non-Authoritative Description ... 25

6. HOW TO SET RDF LINKS TO OTHER DATA SOURCES 26

6.1 Setting RDF Links Manually ... 27

6.2 Auto-generating RDF Links .. 28

7. Recipes for Serving Information as Linked Data .. 30

7.1 Serving Static RDF Files ... 33

7.2 Serving Relational Databases .. 36

7.3 Serving Other Types of Information .. 37

7.4 Implementing Wrappers around existing Applications or Web APIs 38

8. SPARQL LANGUAGE ... 40

8.1 SPARQL in General.. 41

8.2 Making Simple Queries ... 41

 8.2.1 Writing a Simple Query .. 42

 8.2.2 Multiple Matches .. 43

 8.2.3 Matching Literals with Numeric Types ... 45

 8.2.4 Blank Node Labels in Query Results ... 46

8.3 Query Forms ... 49

 8.3.1 SELECT ... 49

 8.3.2 CONSTRUCT .. 54

Σελίδα 3 από 102

 8.3.3 ASK ... 58

 8.3.4 DESCRIBE (Informative) ... 59

8.4 Subqueries ... 61

8.5 Building RDF Graphs .. 63

8.6 SPARQL Filters .. 65

8.7 SPARQL endpoint .. 66

9. D2RQ PLATFORM .. 66

9.1 D2R Server: Accessing databases with SPARQL and as Linked Data. 67

 9.1.1 Getting started with D2R Server .. 69

 9.1.2 Running D2R Server from the command line 72

 9.1.3 Running D2R Server in a servlet container 73

 9.1.4 D2R Server Configuration .. 74

 9.1.5 Server level Configuration Options .. 74

 9.1.6 Dataset and Resource Metadata ... 77

 9.1.7 Optimizing Performance .. 78

9.2 Auto-generating D2RQ mapping files ... 79

 9.2.1 Direct Mapping Description .. 83

9.3 d2r-query: Running SPARQL queries against a database 92

9.4 dump-rdf: Dumping the database to an RDF file 94

10. IMPLEMENTATION ... 96

10.1 Relational DB to Linked Data .. 96

Σελίδα 4 από 102

ABSTRACT

Σελίδα 5 από 102

1. INTRODUCTION, LINKED DATA O THE WEB

The Web is increasingly understood as a global information space consisting
not just of linked documents, but also of Linked Data. More than just a vision,
the resulting Web of Data has been brought into being by the maturing of the
Semantic Web technology stack, and by the publication of an increasing
number of data sets according to the principles of Linked Data. It describes a
method of publishing structured data so that it can be interlinked and become
more useful. It builds upon standard Web technologies such as HTTP and
URIs, but rather than using them to serve web pages for human readers, it
extends them to share information in a way that can be read automatically by
computers. This enables data from different sources to be connected and
queried. The goal of Linked Data is to enable people to share structured data
on the Web as easily as they can share documents today. In summary,
Linked Data is simply about using the Web to create typed links between data
from different sources.

The basic tenets of Linked Data are to:

 use the RDF data model to publish structured data on the Web

 use RDF links to interlink data from different data sources

Applying both principles leads to the creation of a data commons on the Web,
a space where people and organizations can post and consume data about
anything. This data commons is often called the Web of Data or Semantic
Web.

The Web of Data can be accessed using Linked Data browsers, just as the
traditional Web of documents is accessed using HTML browsers. However,
instead of following links between HTML pages, Linked Data browsers enable
users to navigate between different data sources by following RDF links. This
allows the user to start with one data source and then move through a
potentially endless Web of data sources connected by RDF links. For
instance, while looking at data about a person from one source, a user might
be interested in information about the person's home town. By following an
RDF link, the user can navigate to information about that town contained in
another dataset.

Just as the traditional document Web can be crawled by following hypertext
links, the Web of Data can be crawled by following RDF links. Working on the
crawled data, search engines can provide sophisticated query capabilities,
similar to those provided by conventional relational databases. Because the
query results themselves are structured data, not just links to HTML pages,
they can be immediately processed, thus enabling a new class of applications
based on the Web of Data.

The glue that holds together the traditional document Web is the hypertext

links between HTML pages. The glue of the data web is RDF links. An RDF

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Uniform_resource_identifier
http://www4.wiwiss.fu-berlin.de/bizer/pub/linkeddatatutorial/#datamodel
http://www4.wiwiss.fu-berlin.de/bizer/pub/linkeddatatutorial/#RDFlinks

Σελίδα 6 από 102

link simply states that one piece of data has some kind of relationship to

another piece of data. These relationships can have different types. For

instance, an RDF link that connects data about people can state that two

people know each other. An RDF link that connects information about a

person with information about publications in a bibliographic database might

state that a person is the author of a specific paper.

There is already a lot of structured data accessible on the Web through Web

2.0 APIs such as the eBay, Amazon, Yahoo, and Google Base APIs.

Compared to these APIs, Linked Data has the advantage of providing a

single, standardized access mechanism instead of relying on diverse

interfaces and result formats. This allows data sources to be:

 more easily crawled by search engines,

 accessed using generic data browsers, and

Enables links between data from different data sources.

Having provided a background to Linked Data concepts, the rest of this

document is structured as follows: Section 2 outlines the basic principles of

Linked Data. Section 3 provides practical advice on how to name resources

with URI references. Section 4 discusses terms from well-known

vocabularies and data sources which should be reused to represent

information. Section 5 explains what information should be included into RDF

descriptions that are published on the Web. Section 6 shows us the basic

way to set RDF links to other data sources while in Section 7 we focus on

how we can serve the information as linked data. Finally in the Sections 8

and 9 we figure the way we can handle this information from an endpoint

using the well known language and basic tool SPARQL and in the same time

we introduce the basic tool / server D2RQ Platform. We use the functions of

the D2R Server in order to translate a relational DB to Linked Data view and

upload this information in a website.

2. BASIC PRINCIPLES
This chapter describes the basic principles of Linked Data. As Linked Data is

closely aligned to the general architecture of the Web, we first summarize the

basic principles of this architecture. Then we give an overview of the RDF

data model and recommend how the data model should be used in the Linked

Data context.

2.1 Web Architecture

This section summarizes the basic principles of the Web Architecture and

introduces terminology such as resources and representation.

http://www.programmableweb.com/api/ebay
http://www.programmableweb.com/api/amazon-ecommerce
http://www.programmableweb.com/api/yahoo-search
http://www.programmableweb.com/api/google-base
http://www4.wiwiss.fu-berlin.de/bizer/pub/linkeddatatutorial/#principles
http://www4.wiwiss.fu-berlin.de/bizer/pub/linkeddatatutorial/#howname
http://www4.wiwiss.fu-berlin.de/bizer/pub/linkeddatatutorial/#whichvocabs
http://www4.wiwiss.fu-berlin.de/bizer/pub/linkeddatatutorial/#deref

Σελίδα 7 από 102

Resources

Information resources are resources, identified by URIs and whose essential
characteristics can be conveyed in a message. The pages and documents
familiar to users of the Web are information resources. Information resources
typically have one or more representations that can be accessed using HTTP.
It is these representations of the resource that flow in messages. The act of
retrieving a representation of a resource identified by a URI is known
as dereferencing that URI. Applications, such as browsers, render the
retrieved representation so that it can be perceived by a user. Most Web
users do not distinguish between a resource and the rendered representation
they receive by accessing it.

Information resources make up the vast majority of the Web today. Their
behavior is well understood. In particular, information resources have
representations which are, in some sense, 'obvious'. The essence of an
information resource is information. Consequently, the act of creating a
representation is simply a transformation of that information into an
appropriate form. Often that transformation will include formatting that allows
the rendered representation to be used conveniently by a Web user.

As an example, let's consider the creation of a statement of activity for a
particular month for a particular bank account. We'll suppose that a URI
identifies the resource which, in this case, is a particular set of of binary data
held in a relational database. To create a representation of the resource, the
appropriate data is first extracted from the database and converted to textual
form. Then it is embedded in a stream of HTML markup that also references
appropriate styling information. This representation flows across the Web to a
browser, where it is rendered. A user is able to perceive the rendered form
and to understand the activity on the account for month in question.

The process of creating and rendering representations from information
resources is so common that it is often either overlooked or considered to be
completely ubiquitous. However, not all Web resources are necessarily
associated with obvious representations.

Representations

Information resources can have representations. A representation is a stream

of bytes in a certain format, such as HTML, RDF/XML, or JPEG. For example,

an invoice is an information resource. It could be represented as an HTML

page, as a printable PDF document, or as an RDF document. A single

information resource can have many different representations, e.g. in different

formats, resolution qualities, or natural languages.

http://www.w3.org/TR/webarch/#id-resources

Σελίδα 8 από 102

Associating Information Resources with Other Resources

The representations of information resources associated with other kinds of
resource can be extremely useful. However, it would be misleading to claim
that they are representations of the resource itself.

Information resources associated with a non-information resource need to
have their own URIs. They are themselves distinct resources and provide
representations. They may have uses other than providing additional
information about the non-information resource. However, the fact that they
are associated with a non-information resource is important.

W3C Technical Architecture Group (TAG)

The W3C Technical Architecture Group (TAG) distinguishes between two
kinds of resources: information resources and non-information
resources (also called 'other resources'). This distinction is quite important in
a Linked Data context. All the resources we find on the traditional document
Web, such as documents, images, and other media files, are information
resources. But many of the things we want to share data about are not:
People, physical products, places, proteins, scientific concepts, and so on. As
a rule of thumb, all “real-world objects” that exist outside of the Web are non-
information resources.

Differencing HTTP URIs

URI Dereferencing is the process of looking up a URI on the Web in order to

get information about the referenced resource. The W3C TAG draft finding

about Dereferencing HTTP URIs introduced a distinction on how URIs

identifying information resources and non-information resources are

dereferenced:

 Information Resources: When a URI identifying an information

resource is dereferenced, the server of the URI owner usually

generates a new representation, a new snapshot of the information

resource's current state, and sends it back to the client using the HTTP

response code 200 OK.

 Non-Information Resources cannot be dereferenced directly. Therefore

Web architecture uses a trick to enable URIs identifying non-

information resources to be dereferenced: Instead of sending a

representation of the resource, the server sends the client the URI of

an information resource which describes the non-information resource

using the HTTP response code 303. This is called a 303 redirect. In a

http://www.w3.org/2001/tag/
http://www.w3.org/2001/tag/
http://www.w3.org/2001/tag/doc/httpRange-14/2007-05-31/HttpRange-14

Σελίδα 9 από 102

second step, the client dereferences this new URI and gets a

representation describing the original non-information resource.

Content Negotiation

HTML browsers usually display RDF representations as raw RDF code, or

simply download them as RDF files without displaying them. This is not very

helpful to the average user. Therefore, serving a proper HTML representation

in addition to the RDF representation of a resource helps humans to figure out

what a URI refers to.

This can be achieved using an HTTP mechanism called content negotiation.

HTTP clients send HTTP headers with each request to indicate what kinds of

representation they prefer. Servers can inspect those headers and select an

appropriate response. If the headers indicate that the client prefers HTML,

then the server can generate an HTML representation. If the client prefers

RDF, then the server can generate RDF.

Content negotiation for non-information resources is usually implemented in

the following way. When a URI identifying a non-information resource is

dereferenced, the server sends a 303 redirect to an information resource

appropriate for the client. Therefore, a data source often serves three URIs

related to each non-information resource, for instance:

 http://www4.wiwiss.fu-berlin.de/factbook/resource/Russia (URI

identifying the non-information resource Russia)

 http://www4.wiwiss.fuberlin.de/factbook/data/Russia (information

resource with an RDF/XML representation describing Russia)

 http://www4.wiwiss.fuberlin.de/factbook/page/Russia (information

resource with an HTML representation describing Russia)

Figure 1 below shows how dereferencing a HTTP URI identifying a non-

information resource plays together with content negotiation:

1. The client performs an HTTP GET request on a URI identifying a non-

information resource. In our case a vocabulary URI. If the client is a Linked

Data browser and would prefer an RDF/XML representation of the

resource, it sends an Accept: application/ rdf + xml header along with the

request. HTML browsers would send an Accept: text / html header instead.

http://www4.wiwiss.fu-berlin.de/factbook/resource/Russia
http://www4.wiwiss.fuberlin.de/factbook/data/Russia
http://www4.wiwiss.fuberlin.de/factbook/page/Russia

Σελίδα 10 από 102

2. The server recognizes the URI to identify a non-information resource. As

the server can not return a representation of this resource, it answers

using the HTTP 303 See Other response code and sends the client the

URI of an information resource describing the non-information resource. In

the RDF case: RDF content location.

3. The client now asks the server to GET a representation of this information

resource, requesting again application/ rdf + xml.

4. The server sends the client a RDF/XML document containing a description

of the original resource vocabulary URI.

Figure 1: “Content Negotiation between server and client”

URI Aliases

In an open environment like the Web it often happens that different

information provider’s talk about the same non-information resource, for

instance a geographic location or a famous person. As they do not know

about each other, they introduce different URIs for identifying the same real-

world object. For instance: DBpedia data source providing information that

has been extracted from Wikipedia uses the

URI http://dbpedia.org/resource/Berlin to identify Berlin. Geonames is a data

source providing information about millions of geographic locations uses the

URI http://sws.geonames.org/2950159/ to identify Berlin. As both URIs refer

to the same non-information resource, they are called URI aliases. URI

aliases are common on the Web of Data, as it cannot realistically be expected

that all information providers agree on the same URIs to identify a non-

http://dbpedia.org/resource/Berlin
http://sws.geonames.org/2950159/

Σελίδα 11 από 102

information resources. URI aliases provide an important social function to the

Web of Data as they are dereferenced to different descriptions of the same

non-information resource and thus allow different views and opinions to be

expressed. In order to still be able to track that different information providers

speak about the same non-information resource, it is common practice
that information providers set owl: sameAs links to URI aliases they know

about.

2.2. The RDF Data Model

When publishing Linked Data on the Web, we represent information about

resources using the Resource Description Framework (RDF). RDF provides a

data model that is extremely simple on the one hand but strictly tailored

towards Web architecture on the other hand.

In RDF, a description of a resource is represented as a number of triples. The

three parts of each triple are called its subject, predicate, and object. A triple

mirrors the basic structure of a simple sentence, such as this one:

 Chris has the email address chris@bizer.de.

 (Subject) (Predicate) (Object)

The subject of a triple is the URI identifying the described resource. The

object can either be a simple literal value, like a string, number, or date or the

URI of another resource that is somehow related to the subject. The

predicate, in the middle, indicates what kind of relation exists between subject

and object, e.g. this is the name or date of birth (in the case of a literal), or the

employer or someone the person knows (in the case of another resource).

The predicate is a URI too. These predicate URIs come from vocabularies,

collections of URIs that can be used to represent information about a certain

domain.

Some people like to imagine a set of RDF triples as an RDF graph. The URIs

occurring as subject and object URIs are the nodes in the graph, and each

triple is a directed arc (arrow) that connects the subject to the object.

Two principal types of RDF triples can be distinguished, Literal Triples and

RDF Links:

Literal Triples
Have an RDF literal such as a string, number, or date as the object.

Literal triples are used to describe the properties of resources. For

http://www.w3.org/TR/owl-ref/#sameAs-def
http://www.w3.org/TR/rdf-concepts/

Σελίδα 12 από 102

instance, literal triples are used to describe the name or date of birth of

a person.

RDF Links
Represent typed links between two resources. RDF links consist of

three URI references. The URIs in the subject and the object position

of the link identify the interlinked resources. The URI in the predicate

position defines the type of the link. For instance, an RDF link can state

that a person is employed by an organization. Another RDF link can

state that the persons know certain other people.

RDF links are the foundation for the Web of Data. Dereferencing the URI that

appears as the destination of a link yields a description of the linked resource.

This description will usually contain additional RDF links which point to other

URIs that in turn can also be dereferenced, and so on. This is how individual

resource descriptions are woven into the Web of Data. This is also how the

Web of Data can be navigated using a Linked Data browser or crawled by the

robot of a search engine.

Let's take an RDF browser like Disco or Tabulator as an example. The surfer

uses the browser to display information about Richard from his FOAF profile.

Richard has identified himself with the

URI http://richard.cyganiak.de/foaf.rdf#cygri. When the surfer types this URI

into the navigation bar, the browser dereferences this URI over the Web,

asking for content type application / rdf + xml and displays the retrieved

information. In his profile, Richard has stated that he is based near Berlin,

using the DBpedia http://dbpedia.org/resource/Berlin as URI alias for the non-

information resource Berlin. As the surfer is interested in Berlin, he instructs

the browser to dereference this URI by clicking on it. The browser now

dereferences this URI asking for application / rdf + xml [Figure 2].

Figure 2

http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/disco/
http://www.w3.org/2005/ajar/tab
http://richard.cyganiak.de/foaf.rdf#cygri
http://www4.wiwiss.fu-berlin.de/rdf_browser/?browse_uri=http%3A//dbpedia.org/resource/Berlin

Σελίδα 13 από 102

After being redirected with a HTTP 303 response code, the browser retrieves

an RDF graph describing Berlin in more detail. A part of this graph is shown

below. The graph contains a literal triple stating that Berlin has 3.405.259

inhabitants and another RDF link to a resource representing a list of German

cities [Figure 3].

Figure 3

As both RDF graphs share the URI http://dbpedia.org/resource/Berlin, they

naturally merge together, as shown below [Figure 4].

Figure 4

The surfer might also be interested in other German cities. Therefore he lets

the browser dereference the URI identifying the list. The retrieved RDF graph

contains more RDF links to German cities, for instance, Hamburg and

München as shown below.

http://dbpedia.org/resource/Berlin

Σελίδα 14 από 102

Figure 5

Seen from a Web perspective, the most valuable RDF links are those that

connect a resource to external data published by other data sources, because

they link up different islands of data into a Web. Technically, such an external

RDF link is a RDF triple which has a subject URI from one data source and an

object URI from another data source. The box below contains various external

RDF links taken from different data sources on the Web.

Examples of External RDF Links

 Two RDF links taken from DBpedia

 <http://dbpedia.org/resource/Berlin>

 Owl:sameAs <http://sws.geonames.org/2950159/> .

 <http://dbpedia.org/resource/Tim_Berners-Lee>

 Owl: sameAs <http://www4.wiwiss.fu-

 berlin.de/dblp/resource/person/100007> .

Σελίδα 15 από 102

 RDF links taken from Tim Berners-Lee's FOAF profile

 <http://www.w3.org/People/Berners-Lee/card#i>

 Owl:sameAs <http://dbpedia.org/resource/Tim_Berners-

 Lee>;

 foaf:knows <http://www.w3.org/People/Connolly/#me> .

Benefits of using the RDF Data Model in the Linked Data

Context

The main benefits of using the RDF data model in a Linked Data context are

that:

 Clients can look up every URI in an RDF graph over the Web to

retrieve additional information.

 Information from different sources merges naturally.

The data model enables you to set RDF links between data from different

sources.

 The data model allows you to represent information that is expressed

using different schemata in a single model.

 Combined with schema languages such as RDF-S or OWL, the data

model allows you to use as much or as little structure as you need,

meaning that you can represent tightly structured data as well as semi-

structured data.

3. CHOOSING HTTP URIs
Resources are named with URI references. When publishing Linked Data, we

should devote some effort to choosing good URIs for our resources.

On the one hand, they should be good names that other publishers can use

confidently to link to your resources in their own data. On the other hand, we

will have to put technical infrastructure in place to make

them dereferenceable, and this may put some constraints on what we can do.

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-features/

Σελίδα 16 από 102

This section lists, in loose order, some things we have to keep in mind.

 Use HTTP URIs for everything. The http:// scheme is the only URI

scheme that is widely supported in today's tools and infrastructure. All

other schemes require extra effort for resolver web services, dealing

with identifier registrars, and so on.

 Define our URIs in an HTTP namespace under our control, where we

actually can make them dereferenceable. Do not define them in

someone else's namespace.

 Keep implementation craft out of your URIs. Short, mnemonic names

are better. Consider these two examples:

o http://dbpedia.org/resource/Berlin

o http://www4.wiwiss.fu-berlin.de:2020/demos/dbpedia/cgi-

bin/resources.php?id=Berlin

 Try to keep our URIs stable and persistent. Changing our URIs later

will break any already-established links, so it is advisable to devote

some extra thought to them at an early stage.

 We often end up with three URIs related to a single non-information

resource:

1. an identifier for the resource,

2. an identifier for a related information resource suitable to HTML

browsers (with a web page representation)

3. an identifier for a related information resource suitable to RDF

browsers (with an RDF/XML representation).

Here are several ideas for choosing these related URIs:

4. http://dbpedia.org/resource/Berlin

5. http://dbpedia.org/page/Berlin

6. http://dbpedia.org/data/Berlin

Or:

7. http://id.dbpedia.org/Berlin

8. http://pages.dbpedia.org/Berlin

9. http://data.dbpedia.org/Berlin

Or:

Σελίδα 17 από 102

10. http://dbpedia.org/Berlin

11. http://dbpedia.org/Berlin.html

12. http://dbpedia.org/Berlin.rdf

We will often need to use some kind of primary key inside our URIs, to make

sure that each one is unique. If we can, we use a key that is meaningful inside

our domain. For example, when dealing with books, making the ISBN number

part of the URI is better than using the primary key of an internal database

table. This also makes equivalence mining to derive RDF links easier.

Examples of cool URIs:

 http://dbpedia.org/resource/Boston

 http://www4.wiwiss.fu-berlin.de/bookmashup/books/006251587X

4. WHICH VOCABULARIES SHOULD I USE TO

REPRESENT INFORMATION?

In order to make it as easy as possible for client applications to process our

data, we should reuse terms from well-known vocabularies wherever possible.

We should only define new terms if we cannot find required terms in existing

vocabularies.

4.1 Reusing existing terms

A set of well-known vocabularies has evolved in the Semantic Web

community. We have to check whether our data can be represented using

terms from these vocabularies before defining any new terms:

 Friend-of-a-Friend (FOAF), vocabulary for describing people.

 Dublin Core (DC) defines general metadata attributes.

http://dbpedia.org/Berlin.rdf
http://www4.wiwiss.fu-berlin.de/bizer/pub/linkeddatatutorial/#autogenerateLinks
http://dbpedia.org/resource/Boston
http://www4.wiwiss.fu-berlin.de/bookmashup/books/006251587X
http://xmlns.com/foaf/0.1/
http://dublincore.org/documents/dcmes-xml/

Σελίδα 18 από 102

 Semantically-Interlinked Online Communities (SIOC), vocabulary for

representing online communities.

 Description of a Project (DOAP), vocabulary for describing projects.

 Simple Knowledge Organization System (SKOS), vocabulary for

representing taxonomies and loosely structured knowledge.

 Music Ontology provides terms for describing artists, albums and

tracks.

 Review Vocabulary, vocabulary for representing reviews.

 Creative Commons (CC), vocabulary for describing license

terms.

It is common practice to mix terms from different vocabularies. We

recommend the use of rdfs:label and foaf:depiction properties whenever

possible as these terms are well-supported by client applications.

If we need URI references for geographic places, research areas, general

topics, artists, books or CDs, we should consider using URIs from data

sources within the W3C SWEO Linking Open Data community project, for

instance Geonames, DBpedia, Musicbrainz, dbtune or the RDF Book

Mashup. The two main benefits of using URIs from these data sources are:

1. The URIs are dereferenceable, meaning that a description of the

concept can be retrieved from the Web. For instance, using the

DBpedia URI http://dbpedia.org/page/Doom to identify the computer

game Doom gives you an extensive description of the game including

abstracts in 10 different languages and various classifications.

2. The URIs are already linked to URIs from other data sources. For

instance, we can navigate from the DBPedia URI

http://dbpedia.org/resource/Berlin to data about Berlin provides by

Geonames and EuroStat. Therefor, by using concept URIs from these

datasets, we interlink our data with a rich and fast-growing network of

other data sources.

http://sioc-project.org/
http://usefulinc.com/doap/
http://www.w3.org/2004/02/skos/
http://musicontology.com/
http://purl.org/stuff/rev
http://creativecommons.org/ns
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://www.geonames.org/ontology/
http://dbpedia.org/
http://fgiasson.com/blog/index.php/2007/05/22/browsing-musicbrainzs-dataset-via-uri-dereferencing/
http://purl.org/dbtune/
http://sites.wiwiss.fu-berlin.de/suhl/bizer/bookmashup/index.html
http://sites.wiwiss.fu-berlin.de/suhl/bizer/bookmashup/index.html
http://dbpedia.org/page/Doom
http://dbpedia.org/resource/Berlin

Σελίδα 19 από 102

4.2 How to define terms?

When we cannot find good existing vocabularies that cover all the classes and

properties we need, then we have to define our own terms. Defining new

terms is not hard. RDF classes and properties are resources themselves,

identified by URIs, and published on the Web, so everything we said about

publishing Linked Data applies to them as well.

We can define vocabularies using the RDF Vocabulary Description Language

1.0: RDF Schema or the Web Ontology Language (OWL)

Here we give some guidelines for those who are familiar with these

languages:

1. Do not define new vocabularies from scratch, but complement

existing vocabularies with additional terms (in your own namespace) to

represent our data as required.

2. Provide for both humans and machines. At this stage in the

development of the Web of Data, more people will be coming across

your code than machines, even though the Web of Data is meant for

machines in the first instance. We cannot forget to add prose,

e.g. rdfs:comments for each term invented. Always provide a label for

each term using the rdfs:label property.

3. Make term URIs dereferenceable. It is essential that term URIs are

dereferenceable so that clients can look up the definition of a term.

Therefore we should make term URIs dereferenceable following

the W3C Best Practice Recipes for Publishing RDF Vocabularies.

4. Make use of other people's terms. Using other people's terms, or

providing mappings to them, helps to promote the level of data

interchange on the Web of Data, in the same way that hypertext links

built the traditional document Web.

5. State all important information explicitly. For example, state all

ranges and domains explicitly. Remember: humans can often do

guesswork, but machines can't. Don't leave important information out!

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/rdf-schema/#ch_comment
http://www.w3.org/TR/rdf-schema/#ch_label
http://www.w3.org/TR/swbp-vocab-pub/

Σελίδα 20 από 102

6. Do not create over-constrained, brittle models, leave some

flexibility for growth. For instance, if we use full-featured OWL to

define our vocabulary, we might state things that lead to unintended

consequences and inconsistencies when somebody else references

our term in a different vocabulary definition. Therefore, unless we know

exactly what we are doing, use RDF-Schema to define vocabularies.

The following example contains a definition of a class and a property following

the rules above. The example uses the Turtle syntax. Namespace

declarations are omitted.

Definition of the class "Lover"

<http://sites.wiwiss.fu-

berlin.de/suhl/bizer/pub/LoveVocabulary#Lover>

 rdf:type rdfs:Class ;

 rdfs:label "Lover"@en ;

 rdfs:label "Liebender"@de ;

 rdfs:comment "A person who loves somebody."@en ;

 rdfs:comment "Eine Person die Jemanden liebt."@de ;

 rdfs:subClassOf foaf:Person .

Definition of the property "loves"

<http://sites.wiwiss.fu-

berlin.de/suhl/bizer/pub/LoveVocabublary#loves>

 rdf:type rdf:Property ;

 rdfs:label "loves"@en ;

 rdfs:label "liebt"@de ;

http://www.dajobe.org/2004/01/turtle/

Σελίδα 21 από 102

 rdfs:comment "Relation between a lover and a loved person."@en ;

 rdfs:comment "Beziehung zwischen einem Liebenden und einer

geliebten Person."@de ;

 rdfs:subPropertyOf foaf:knows ;

 rdfs:domain <http://sites.wiwiss.fu-

berlin.de/suhl/bizer/pub/LoveVocabulary#Lover> ;

 rdfs:range foaf:Person .

5. WHAT SHOULD I RETURN AS RDF DESCRIPTION

FOR A URI

So, assuming we have expressed all our data in RDF triples: What triples

should go into the RDF representation that is returned (after a 303 redirect) in

response to dereferencing a URI identifying a non-information resource?

1. The description: The representation should include all triples from our

dataset that have the resource's URI as the subject. This is the

immediate description of the resource.

2. Backlinks: The representation should also include all triples from our

dataset that have the resource's URI as the object. This is redundant,

as these triples can already be retrieved from their subject URIs, but it

allows browsers and crawlers to traverse links in either direction.

3. Related descriptions: We may include any additional information

about related resources that may be of interest in typical usage

scenarios. For example, we may want to send information about the

author along with information about a book, because many clients

interested in the book may also be interested in the author. A moderate

approach is recommended, returning a megabyte of RDF will be

considered excessive in most cases.

Σελίδα 22 από 102

4. Metadata: The representation should contain any metadata we want to

attach to our published data, such as a URI identifying the author and

licensing information. These should be recorded as RDF descriptions

of the information resource that describes a non-information resource,

that is, the subject of the RDF triples should be the URI of the

information resource. Attaching meta-information to that information

resource, rather than attaching it to the described resource itself or to

specific RDF statements about the resource (as with RDF reification)

plays nicely together with using Named Graphs and

the SPARQL query language in Linked Data client applications.

In order to enable information consumers to use our data

under clear legal terms, each RDF document should contain a license

under which the content can be used.

5. Syntax: There are various ways to serialize RDF descriptions. Our

data source should at least provide RDF descriptions

as RDF/XML which is the only official syntax for RDF, as RDF/XML is

not very human-readable.

5.1 Authoritative Description

In the following, we give two examples of RDF descriptions following the rules

above. The first example covers the case of an authoritative representation

served by a URI owner. The second example covers the case of non-

authoritative information served by somebody who is not the owner of the

described URI.

 Metadata and Licensing Information

<http://dbpedia.org/data/Alec_Empire>

 rdfs:label "RDF description of Alec Empire" ;

http://www.w3.org/2004/03/trix/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-syntax-grammar/

Σελίδα 23 από 102

 rdf:type foaf:Document ;

 dc:publisher <http://dbpedia.org/resource/DBpedia> ;

 dc:date "2007-07-13"^^xsd:date ;

 dc:rights

 <http://en.wikipedia.org/wiki/WP:GFDL> .

 The description

<http://dbpedia.org/resource/Alec_Empire>

 foaf:name "Empire, Alec" ;

 rdf:type foaf:Person ;

 rdf:type <http://dbpedia.org/class/yago/musician> ;

 rdfs:comment

 "Alec Empire (born May 2, 1972) is a German musician who is

..."@en ;

 rdfs:comment

 "Alec Empire (eigentlich Alexander Wilke) ist ein deutscher

Musiker. ..."@de ;

 dbpedia:genre <http://dbpedia.org/resource/Techno> ;

 dbpedia:associatedActs

<http://dbpedia.org/resource/Atari_Teenage_Riot> ;

 foaf:page <http://en.wikipedia.org/wiki/Alec_Empire> ;

 foaf:page <http://dbpedia.org/page/Alec_Empire> ;

Σελίδα 24 από 102

 rdfs:isDefinedBy <http://dbpedia.org/data/Alec_Empire> ;

 owl:sameAs <http://zitgist.com/music/artist/d71ba53b-23b0-4870-

a429-cce6f345763b> .

 Backlinks

<http://dbpedia.org/resource/60_Second_Wipeout>

 dbpedia:producer <http://dbpedia.org/resource/Alec_Empire> .

<http://dbpedia.org/resource/Limited_Editions_1990-1994>

 dbpedia:artist <http://dbpedia.org/resource/Alec_Empire> .

Note that the description contains an owl:sameAs Link stating

that http://dbpedia.org/resource/Alec_Empire and http://zitgist.com/music/artis

t/d71ba53b-23b0-4870-a429-cce6f345763b are URI aliases referring to the

same non-information resource.

In order to make it easier for Linked Data clients to understand the relation

between:

http://dbpedia.org/resource/Alec_Empire

or

http://dbpedia.org/data/Alec_Empire

and

http://dbpedia.org/page/Alec_Empire

 The URIs can be interlinked using the rdfs: isDefinedBy and the foaf:

page property.

http://dbpedia.org/resource/Alec_Empire
http://zitgist.com/music/artist/d71ba53b-23b0-4870-a429-cce6f345763b
http://zitgist.com/music/artist/d71ba53b-23b0-4870-a429-cce6f345763b
http://dbpedia.org/resource/Alec_Empire
http://dbpedia.org/data/Alec_Empire
http://dbpedia.org/page/Alec_Empire
http://www.w3.org/TR/rdf-schema/#ch_isdefinedby
http://xmlns.com/foaf/0.1/#term_page
http://xmlns.com/foaf/0.1/#term_page

Σελίδα 25 από 102

5.2 Non-Authoritative Description

The following example shows the representation of the information resource:

http://sites.wiwiss.fu-

berlin.de/suhl/bizer/pub/LinkedDataTutorial/ChrisAboutRichard

 It is published by Chris to provide information about Richard. Richard

owns the URI http://richard.cyganiak.de/foaf.rdf#cygri and is therefore the

only person who can provide an authoritative description for this URI. Thus

using Web Architecture terminology, Chris is providing non-authoritative

information about Richard.

 Metadata and Licensing Information

<>

 rdf:type foaf:Document ;

 dc:author <http://www.bizer.de#chris> ;

 dc:date "2007-07-13"^^xsd:date ;

 cc:license <http://web.resource.org/cc/PublicDomain> .

 The description

<http://richard.cyganiak.de/foaf.rdf#cygri>

 foaf:name "Richard Cyganiak" ;

 foaf:topic_interest

<http://dbpedia.org/resource/Category:Databases> ;

http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/ChrisAboutRichard
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/ChrisAboutRichard
http://richard.cyganiak.de/foaf.rdf#cygri
http://www.w3.org/TR/webarch/

Σελίδα 26 από 102

 foaf:topic_interest <http://dbpedia.org/resource/MacBook_Pro> ;

 rdfs:isDefinedBy <http://richard.cyganiak.de/foaf.rdf> ;

 rdf:seeAlso <> .

 Backlinks

<http://www.bizer.de#chris>

 foaf:knows <http://richard.cyganiak.de/foaf.rdf#cygri> .

<http://www4.wiwiss.fu-berlin.de/is-group/resource/projects/Project3>

 doap:developer <http://richard.cyganiak.de/foaf.rdf#cygri>

6. HOW TO SET RDF LINKS TO OTHER DATA

SOURCES

RDF links enable Linked Data browsers and crawlers to navigate between

data sources and to discover additional data.

The application domain will determine which RDF properties are used as

predicates. For instance, commonly used linking properties in the domain of

describing people are :

 Foaf : based

 Foaf : based near

 Foaf : topic_interest

It is common practice to use the owl:sameAs property for stating that another

data source also provides information about a specific non-information

resource. An owl:sameAs link indicates that two URI references actually refer

http://www.w3.org/TR/owl-ref/#sameAs-def

Σελίδα 27 από 102

to the same thing. Therefore, owl:sameAs is used to map between different

URI aliases.

6.1 Setting RDF Links Manually

Before you can set RDF links manually, you need to know something about

the datasets you want to link to. In order to get an overview of different

datasets that can be used as linking targets please refer to the Linking Open

Data Dataset list. Once you have identified particular datasets as suitable

linking targets, you can manually search in these for the URI references you

want to link to. If a data source doesn't provide a search interface, for instance

a SPARQL endpoint or a HTML Web form, you can use Linked Data browsers

like Tabulator or Disco to explore the dataset and find the right URIs.

You can also use services such as Uriqr or Sindice to search for existing URIs

and to choose the most popular one if you find several candidates. Uriqr

allows you to find URIs for people you know, simply by searching for their

name. Results are ranked according to how heavily a particular URI is

referenced in RDF documents on the Web, but you will need to apply a little

bit of human intelligence in picking the most appropriate URI to use. Sindice

indexes the Semantic Web and can tell you which sources mention a certain

URI. Therefore the service can help you to choose the most popular URI for a

concept.

Remember that data sources might use HTTP-303 redirects to redirect clients

from URIs identifying non-information resources to URIs identifying

information resources that describe the non-information resources. In this

case, make sure that you link to the URI reference identifying the non-

information resource, and not the document about it.

http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets
http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/disco/
http://uriqr.com/
http://www.sindice.com/

Σελίδα 28 από 102

6.2 Auto-generating RDF Links

The approach described above does not scale to large datasets, for instance

interlinking 70,000 places in DBpedia to their corresponding entries

in Geonames. In such cases it makes sense to use an automated record

linkage algorithm to generate RDF links between data sources.

Record Linkage is a well-known problem in the databases community. The

Linking Open Data Project collects material related to using record linkage

algorithms in the Linked Data context on the Equivalence Mining wiki page.

There is still a lack of good, easy-to-use tools to auto-generate RDF links.

Therefore it is common practice to implement dataset-specific record linkage

algorithms to generate RDF links between data sources. In the following we

describe two classes of such algorithms:

Pattern-based Algorithms

In various domains, there are generally accepted naming schemata. For

instance, in the publication domain there are ISBN numbers, in the financial

domain there are ISIN identifiers. If these identifiers are used as part of HTTP

URIs identifying particular resources, it is possible to use simple pattern-

based algorithms to generate RDF links between these resources.

An example of a data source using ISBN numbers as part of its URIs is

the RDF Book Mashup. It uses the URI

http://www4.wiwiss.fu-berlin.d/bookmashup/books/0747581088

to identify the book 'Harry Potter and the Half-blood Prince'. Having the ISBN

number in these URIs made it easy for DBpedia to generate owl:sameAs links

between books within DBpedia and the Book Mashup. DBpedia uses the

following pattern-based algorithm:

http://dbpedia.org/docs/
http://www.geonames.org/ontology/
http://en.wikipedia.org/wiki/Record_linkage
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/EquivalenceMining
http://en.wikipedia.org/wiki/ISBN
http://en.wikipedia.org/wiki/ISIN
http://www4.wiwiss.fu-berlin.d/bookmashup/books/0747581088

Σελίδα 29 από 102

Having the ISBN number in these URIs made it easy for DBpedia to generate

owl:sameAs links between books within DBpedia and the Book Mashup.

DBpedia uses the following pattern-based algorithm:

1. Iterate over all books in DBpedia that have an ISBN number.

2. Create a owl:sameAs link between the URI of a book in DBpedia and

the corresponding Book Mashup URI using the following pattern for

Book Mashup URIs:

http://www4.wiwiss.fu-berlin.de/bookmashup/books/{ISBN number}.

Running this algorithm against all books in DBpedia resulted in 9000 RDF

links which were merged with the DBpedia dataset. For instance, the resulting

link for the Harry Potter book is:

<http://dbpedia.org/resource/Harry_Potter_and_the_Half-Blood_Prince>

 owl:sameAs <http://www4.wiwiss.fu-

berlin.de/bookmashup/books/0747581088>

More complex property-based Algorithms

In cases where no common identifiers across datasets exist, it is necessary to

employ more complex property-based linkage algorithms. We outline an

algorithm below:

1. Interlinking DBpedia and Geonames. Information about geographic

places appear in the Geonames database as well as in DBpedia. In

order to identify places that appear in both datasets, the Geonames

team uses a property-based heuristic that is based on article title

together with semantic information like latitude and longitude, but also

country, administrative division, feature type, population and

categories. Running this heuristic against both data sources resulted in

70500 correspondences which were merged as Geonames

http://dbpedia.org/docs/downloads/bookmashup.zip
http://dbpedia.org/docs/downloads/bookmashup.zip
http://dbpedia.org/resource/Harry_Potter_and_the_Half-Blood_Prince
http://www4.wiwiss.fu-berlin.de/bookmashup/books/006251587X
http://www4.wiwiss.fu-berlin.de/bookmashup/books/006251587X
http://www.geonames.org/ontology/
http://dbpedia.org/docs/
http://lists.w3.org/Archives/Public/semantic-web/2006Dec/0027.html
http://dbpedia.org/docs/downloads/geonames.zip

Σελίδα 30 από 102

owl:sameAs links with the DBpedia dataset as well as with the

Geonames dataset.

7. Recipes for Serving Information as Linked Data

This chapter provides practical recipes for publishing different types of

information as Linked Data on the Web. Information has to fulfill the following

minimal requirements to be considered "published as Linked Data on the

Web":

 Things must be identified with dereferenceable HTTP URIs.

 If such a URI is dereferenced asking for the MIME-

type application/rdf+xml, a data source must return an RDF/XML

description of the identified resource.

 URIs that identify non-information resources must be set up in one of

these ways: Either the data source must return an HTTP response

containing an HTTP 303 redirect to an information resource describing

the non-information resource, as discussed earlier in this document. Or

the URI for the non-information resource must be formed by taking the

URI of the related information resource and appending a fragment

identifier.

 Besides RDF links to resources within the same data source, RDF

descriptions should also contain RDF links to resources provided by

other data sources, so that clients can navigate the Web of Data as a

whole by following RDF links.

Which of the following recipes fits your needs depends on various factors,

such as:

 How much data do you want to serve? If you only want to publish

several hundred RDF triples, you might want to serve them as a static

Σελίδα 31 από 102

RDF files using Recipe 7.1. If your dataset is larger, you might want to

load it into a proper RDF store and put the Pubby Linked Data

interface in front of it as described in Recipe 7.3.

 How is your data currently stored? If your information is stored in a

relational database, you can use D2R Server as described in Recipe

7.2. If the information is available through an API, you might implement

a wrapper around this API as described in Recipe 7.4. If your

information is represented in some other format such as Microsoft

Excel, CSV or BibTeX, you will have to convert it to RDF first as

described in Recipe 7.3.

 How often does your data change? If your data changes frequently,

you might prefer approaches which generate RDF views on your data,

such as D2R Server (Recipe 7.2), or wrappers (Recipe 7.4).

After you have published your information as Linked Data, you should ensure

that there are external RDF links pointing at URIs from your dataset, so that

RDF browser and crawlers can find your data. There are two basic ways of

doing this:

1. Add several RDF links to your FOAF profile that point at URIs

identifying central resources within your dataset. Assuming that

somebody else in the world knows you and references your FOAF

profile, your new dataset is now reachable by following RDF links.

2. Convince the owners of related data sources to auto-generate RDF

links to URIs from your dataset. Or to make it easier for the owner of

the other dataset, create the RDF links yourself and send them to her

so that she just has to merge them with her dataset. A project that is

extremely open to setting RDF links to other data sources is

the DBpedia community project. Just announce your data source on

the DBpedia mailing list or send a set of RDF links to the list.

http://www4.wiwiss.fu-berlin.de/pubby/
http://www4.wiwiss.fu-berlin.de/pubby/
http://www4.wiwiss.fu-berlin.de/bizer/pub/linkeddatatutorial/#othertypes
http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2r-server/index.html
http://www4.wiwiss.fu-berlin.de/bizer/pub/linkeddatatutorial/#relationaldata
http://www4.wiwiss.fu-berlin.de/bizer/pub/linkeddatatutorial/#relationaldata
http://www4.wiwiss.fu-berlin.de/bizer/pub/linkeddatatutorial/#wrappers
http://www4.wiwiss.fu-berlin.de/bizer/pub/linkeddatatutorial/#othertypes
http://www4.wiwiss.fu-berlin.de/bizer/pub/linkeddatatutorial/#relationaldata
http://www4.wiwiss.fu-berlin.de/bizer/pub/linkeddatatutorial/#wrappers
http://www4.wiwiss.fu-berlin.de/bizer/pub/linkeddatatutorial/#autogenerateLinks
http://www4.wiwiss.fu-berlin.de/bizer/pub/linkeddatatutorial/#autogenerateLinks
http://dbpedia.org/docs/
https://lists.sourceforge.net/lists/listinfo/dbpedia-discussion

Σελίδα 32 από 102

What is the Pubby Linked Data Interface?

Many triple stores and other SPARQL endpoints can be accessed only by

SPARQL client applications that use the SPARQL protocol. It cannot be

accessed by the growing variety of Linked Data clients. Pubby is designed

to provide a Linked Data interface to those RDF data sources [Figure 6].

Figure 6 “Pubby”

In RDF, resources are identified by URIs. The URIs used in most SPARQL

dataset are not dereferenceable, meaning they cannot be accessed in a

Semantic Web browser, but return 404 Not Found errors instead, or use non-

dereferenceable URI schemes, as in the fictional URI tag dbpedia.org,

2007:Berlin.

When setting up a Pubby server for a SPARQL endpoint, you will configure a

mapping that translates those URIs to dereferenceable URIs handled by

Pubby. If your server is running at

http://myserver.org:8080/pubby/

Then the Berlin URI above might be mapped to

http://myserver.org:8080/pubby/Berlin.

Pubby will handle requests to the mapped URIs by connecting to the

SPARQL endpoint, asking it for information about the original URI, and

passing back the results to the client. It also handles various details of the

http://myserver.org:8080/pubby/

Σελίδα 33 από 102

HTTP interaction, such as the 303 redirect required by Web Architecture,

and content negotiation between HTML, RDF/XML and Turtle descriptions of

the same resource.

7.1 Serving Static RDF Files

The simplest way to serve Linked Data is to produce static RDF files, and

upload them to a web server. This approach is typically chosen in situations

where:

 The RDF files are created manually, e.g. when publishing

personal FOAF files or RDF vocabularies or

 The RDF files are generated or exported by some piece of software

that only outputs to files.

Configuring the server for correct MIME types

Older web servers are sometimes not yet configured to return the correct

MIME type when serving RDF/XML files. Linked Data browsers may not

recognize RDF data served in this way because the server claims that it is not

RDF/XML but plain text.

How to fix this depends on the web server. In the case of Apache, add this

line to the httpd.conf configuration file, or to an .htaccess file in the web

server's directory where the RDF files are placed:

AddType application/rdf+xml .rdf

This tells Apache to serve files with an .rdf extension using the correct MIME

type for RDF/XML, application/rdf+xml. Note this means you have to name

your files with the.rdf extension.

http://www.foaf-project.org/

Σελίδα 34 από 102

While you're at it, you can also add these lines to make your web server ready

for other RDF syntaxes (N3 and Turtle):

AddType text/rdf+n3;charset=utf-8 .n3

AddType application/x-turtle .ttl

File size

On the document Web, it's considered bad form to publish huge HTML pages,

because they load very slowly in browsers and consume unnecessary

bandwidth. The same is true when publishing Linked Data: Your RDF files

shouldn't be larger than, say, a few hundred kilobytes. If your files are larger

and describe multiple resources, you should break them up into several RDF

files, or use Pubby as described in recipe 7.3 to serve them in chunks.

When you serve multiple RDF files, make sure they are linked to each other

through RDF triples that involve resources described in different files.

Choosing URIs for non-information resources

The static file approach doesn't support the 303 redirects required for the

URIs of non-information resources. Fortunately there is another standards-

compliant method of naming non-information resources, which works very

well with static RDF files, but has a downside we will discuss later. This

method relies on hash URIs.

When you serve a static RDF file at, say, http://example.com/people.rdf, then

you should name the non-information resources described in the file by

appending a fragment identifier to the file's URI. The identifier must be unique

within the file. That way, you end up with URIs like this for your non-

information resources:

http://www4.wiwiss.fu-berlin.de/bizer/pub/linkeddatatutorial/#PubbyInMemory

Σελίδα 35 από 102

 http://example.com/people.rdf#alice

 http://example.com/people.rdf#bob

This works because HTTP clients dereference hash URIs by stripping off the

part after the hash and dereferencing the resulting URI. A Linked Data

browser will then look into the response (the RDF file in this case), and find

triples that tell it more about the non-information resource, achieving an effect

quite similar to the 303 redirect.

There's a reference to a specific representation format in the identifiers

(the .rdf extension). And if you choose to rename the RDF file later on, or

decide to split your data into several files, then all identifiers will change and

existing links to them will break.

That's why you should use this approach only if the overall structure and size

of the dataset are unlikely to change much in the future, or as a quick-and-

dirty solution for transient data where link stability isn't so important.

Extending the recipe for 303 redirects and content negotiation

This approach can be extended to use 303 redirects and even to support

content negotiation, if you are willing to go through some extra hoops.

Unfortunately this process is dependent on your web server and its

configuration. The W3C has published several recipes that show how to do

this for the Apache web server: Best Practice Recipes for Publishing RDF

Vocabularies. The document is officially targeted at publishers of RDF

vocabularies, but the recipes work for other kinds of RDF data served from

static files. Note that at the time of writing there is still an issue with content

negotiation in this document which might be solved by moving from Apache

mod_rewrite to mod_negotiation.

http://www.w3.org/TR/swbp-vocab-pub/
http://www.w3.org/TR/swbp-vocab-pub/
http://lists.w3.org/Archives/Public/public-swbp-wg/2007Jul/0001.html
http://lists.w3.org/Archives/Public/public-swbp-wg/2007Jul/0001.html

Σελίδα 36 από 102

7.2 Serving Relational Databases

If your data is stored in a relational database it is usually a good idea to leave

it there and just publish a Linked Data view on your existing database.

A tool for serving Linked Data views on relational databases is D2R Server.

D2R server relies on a declarative mapping between the schemata of the

database and the target RDF terms. Based on this mapping, D2R Server

serves a Linked Data view on your database and provides a SPARQL

endpoint for the database [Figure 7].

Figure 7 “Structure of DR2 Server”

There are several D2R Servers online, for example Berlin DBLP Bibliography

Server, Hannover DBLP Bibliography Server, Web-based Systems @ FU

Berlin Group Server or the EuroStat Countries and Regions Server.

Publishing a relational database as Linked Data typically involves the

following steps:

1. Download and install the server software as described in the Quick

Start section of the D2R Server homepage.

http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2r-server/index.html
http://www4.wiwiss.fu-berlin.de/dblp/
http://www4.wiwiss.fu-berlin.de/dblp/
http://dblp.l3s.de/d2r/
http://www4.wiwiss.fu-berlin.de/is-group/
http://www4.wiwiss.fu-berlin.de/is-group/
http://www4.wiwiss.fu-berlin.de/eurostat/
http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2r-server/index.html#quickstart
http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2r-server/index.html#quickstart

Σελίδα 37 από 102

2. Have D2R Server auto-generate a D2RQ mapping from the schema of

your database (see Quick Start).

3. Customize the mapping by replacing auto-generated terms with terms

from well-known and publicly accessible RDF vocabularies.

4. Add your new data source to the ESW Wiki datasets list in the category

Linked Data and SPARQL endpoint list and set several RDF links from

your FOAF profile to the URIs of central resources within your new

data source so that crawlers can discover your data.

Alternatively, you can also use:

1. OpenLink Virtuoso to publish your relational database as Linked Data.

o Virtuoso RDF Views – Getting Started Guide on how to map

your relational database to RDF and

o Deploying Linked Data on how to get URI dereferencing and

content negotiation into place.

2. Triplify, a small plugin for Web applications, which reveals the semantic

structures encoded in relational databases by making database content

available as RDF, JSON or Linked Data.

7.3 Serving Other Types of Information

If your information is currently represented in formats such as CSV, Microsoft

Excel, or BibTEX and you want to serve the information as Linked Data on the

Web it is usually a good idea to do the following:

http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2r-server/index.html#quickstart
http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2r-server/index.html#customize
http://ebiquity.umbc.edu/blogger/100-most-common-rdf-namespaces/
http://www.w3.org/TR/swbp-vocab-pub/
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets
http://esw.w3.org/topic/SparqlEndpoints
http://virtuoso.openlinksw.com/wiki/main/Main/
http://virtuoso.openlinksw.com/Whitepapers/pdf/Virtuoso_SQL_to_RDF_Mapping.pdf
http://virtuoso.openlinksw.com/Whitepapers/pdf/Deploying_Linked_Data_Final1.pdf
http://triplify.org/Overview

Σελίδα 38 από 102

 Convert your data into RDF using an RDFizing tool. There are two

locations where such tools are listed: ConverterToRdf maintained in

the ESW Wiki, and RDFizers maintained by the SIMILE team.

 After conversion, store your data in a RDF repository. A list of RDF

repositories is maintained in the ESW Wiki.

 Ideally the chosen RDF repository should come with a Linked Data

interface which takes care of making your data Web accessible. As

many RDF repositories have not implemented Linked Data interfaces

yet, you can also choose a repository that provides a SPARQL

endpoint and put Pubby as a Linked Data interface in front of your

SPARQL endpoint.

The approach described above is taken by the DBpedia project, among

others. The project uses PHP scripts to extract structured data from Wikipedia

pages. This data is then converted to RDF and stored in a OpenLink

Virtuoso repository which provides a SPARQL endpoint. In order to get a

Linked Data view, Pubby is put in front of the SPARQL endpoint.

If your dataset is sufficiently small to fit completely into the web server's main

memory, then you can do without the RDF repository, and instead

use Pubby's conf:loadRDF option to load the RDF data from an RDF file

directly into Pubby. This might be simpler, but unlike a real RDF repository,

Pubby will keep everything in main memory and doesn't offer a SPARQL

endpoint.

7.4 Implementing Wrappers around existing Applications or
Web APIs

Large numbers of Web applications have started to make their data available

on the Web through Web APIs. Examples of data sources providing such

APIs include eBay, Amazon, Yahoo, Google and Google Base. A more

comprehensive API list is found at Programmable Web. Different APIs provide

http://esw.w3.org/topic/ConverterToRdf
http://simile.mit.edu/RDFizers/
http://esw.w3.org/topic/SemanticWebTools#head-805c63479c854babe4657d5184de605910f6d3e2
http://esw.w3.org/topic/SemanticWebTools#head-805c63479c854babe4657d5184de605910f6d3e2
http://www4.wiwiss.fu-berlin.de/pubby/
http://dbpedia.org/docs/
http://virtuoso.openlinksw.com/wiki/main/Main/
http://virtuoso.openlinksw.com/wiki/main/Main/
http://www4.wiwiss.fu-berlin.de/pubby/
http://www4.wiwiss.fu-berlin.de/pubby/
http://www.programmableweb.com/api/ebay
http://www.programmableweb.com/api/amazon-ecommerce
http://www.programmableweb.com/api/yahoo-search
http://www.programmableweb.com/api/google-ajax-search
http://www.programmableweb.com/api/google-base
http://www.programmableweb.com/

Σελίδα 39 από 102

diverse query and retrieval interfaces and return results using a number of

different formats such as XML, JSON or ATOM. This leads to three general

limitations of Web APIs:

 their content cannot be crawled by search engines

 Web APIs cannot be accessed using generic data browsers

 Mashups are implemented against a fixed number of data sources and

cannot take advantage of new data sources that appear on the Web.

These limitations can be overcome by implementing Linked Data wrappers

around APIs. In general, Linked Data wrappers do the following:

1. They assign HTTP URIs to the non-information resources about which

the API provides data.

2. When one of these URIs is dereferenced asking for application/rdf+xml,

the wrapper rewrites the client's request into a request against the

underlying API.

3. The results of the API request are transformed to RDF and sent back

to the client.

Examples of Linked Data Wrappers include:

The RDF Book Mashup

The RDF Book Mashup makes information about books, their authors,

reviews, and online bookstores available as RDF on the Web. The RDF Book

Mashup assigns a HTTP URI to each book that has an ISBN number.

Whenever one of these URIs is dereferenced, the Book Mashup requests

data about the book, its author as well as reviews and sales offers from

http://sites.wiwiss.fu-berlin.de/suhl/bizer/bookmashup/index.html

Σελίδα 40 από 102

the Amazon API and the Google Base API. This data is then transformed into

RDF and returned to the client [Figure 8].

Figure 8 “RDF Book Mashup”

The RDF Book Mashup is implemented as a small PHP script which can be

used as a template for implementing similar wrappers around other Web

APIs. More information about the Book Mashup and the relationship of Web

APIs to Linked Data in general is available in The RDF Book Mashup.

8. SPARQL LANGUAGE

SPARQL (pronounced “sparkle”, a recursive acronym for SPARQL Protocol

and RDF Query Language) is an RDF query language, that is, a query

language for databases, able to retrieve and manipulate data stored in

Resource Description Framework format. It was made a standard by the RDF

Data Access Working Group (DAWG) of the World Wide Web Consurtium,

and considered as one of the key technologies of Semantic web. On 15

January 2008, SPARQL 1.0 became an official W3C Recommendation.

SPARQL allows for a query to consist of triple patters, conjunctions,

disjunctions, and optional patters.

Implementations for multiple programming languages exist. There exist tools

that allow one to connect and semi-automatically construct a SPARQL query

for a SPARQL query for a SPARQL endpoint, for example ViziQuer. In

addition, there exist tools that translate SPARQL queries to other languages,

for example to SQL and XQuery.

http://www.programmableweb.com/api/amazon-ecommerce
http://www.programmableweb.com/api/google-base
http://rdfapi-php.cvs.sourceforge.net/rdfapi-php/bookmashup/
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/Bizer-ESWC2007-RDFbookmashup.pdf

Σελίδα 41 από 102

8.1 SPARQL in General

 SPARQL Protocol and RDF Query Language

 SPARQL Query Language for RDF

Declarative

Based on the RDF data model (triple/graph)

Our focus

 SPARQL Query Results XML Format

Representation on the results of SPARQL queries

 SPARQL Protocol for RDF

Transmission of SPARQL queries and the results

 SPARQL endpoint: Web Service that implements the protocol

Terminology

The following basic terms are defined in RDF Concepts and used in SPARQL:

 IRI (corresponds to the Concepts and Abstract Syntax RDF URI ref)

 Literal

 Lexical Form

 Plain Literal

 Language Tag

 Typed Literal

 Datatype IRI

 Blank node

8.2 Making Simple Queries

Most forms of SPARQL query contain a set of triple patterns called a basic

graph pattern. Triple patterns are like RDF triples except that each of the

subject, predicate and object may be a variable. A basic graph

pattern matches a subgraph of the RDF data when RDF terms from that

http://www.w3.org/TR/rdf-sparql-query/#defn_RDFTerm

Σελίδα 42 από 102

subgraph may be substituted for the variables and the result is RDF graph

equivalent to the subgraph.

Basic Query Forms

The SPARQL language specifies four different query variations for different

purposes.

 SELECT query

Used to extract raw values from a SPARQL endpoint, the results are

returned in a table format.

 CONSTRUCT query

Used to extract information from the SPARQL endpoint and transform

the results into valid RDF.

 ASK query

Used to provide a simple True/False result for a query on a SPARQL

endpoint.

 DESCRIBE query

Used to extract an RDF graph from the SPARQL endpoint, the

contents of which is left to the endpoint to decide based on what the

maintainer deems as useful information.

Each of these query forms takes a WHERE block to restrict the query

although in the case of the DESCRIBE query the WHERE is optional.

8.2.1 Writing a Simple Query

The example below shows a SPARQL query to find the title of a book from the

given data graph. The query consists of two parts, the SELECT clause

identifies the variables to appear in the query results, and the WHERE clause

provides the basic graph pattern to match against the data graph. The basic

graph pattern in this example consists of a single triple pattern with a single

variable (? title) in the object position.

Σελίδα 43 από 102

Data:

<http://example.org/book/book1>
<http://purl.org/dc/elements/1.1/title> "SPARQL Tutorial".

Query:

SELECT ?title

WHERE

{

 <http://example.org/book/book1>
<http://purl.org/dc/elements/1.1/title> ?title .

}

This query, on the data above, has one solution:

Query Result:

title

"SPARQL Tutorial"

8.2.2 Multiple Matches

The result of a query is a solution sequence, corresponding to the ways in
which the query's graph pattern matches the data. There may be zero, one or
multiple solutions to a query.

Data:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Johnny Lee Outlaw" .

http://www.w3.org/TR/rdf-sparql-query/#defn_sparqlSolutionSequence

Σελίδα 44 από 102

_:a foaf:mbox <mailto:jlow@example.com> .

_:b foaf:name "Peter Goodguy" .

_:b foaf:mbox <mailto:peter@example.org> .

_:c foaf:mbox <mailto:carol@example.org> .

Query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?mbox

WHERE

 { ?x foaf:name ?name .

 ?x foaf:mbox ?mbox }

Query Result:

name mbox

"Johnny Lee Outlaw" <mailto:jlow@example.com>

"Peter Goodguy" <mailto:peter@example.org>

Each solution gives one way in which the selected variables can be bound to
RDF terms so that the query pattern matches the data. The result set gives all
the possible solutions. In the above example, the following two subsets of the
data provided the two matches.

Multiple Optional Graph Patterns

Graph patterns are defined recursively. A graph pattern may have zero or
more optional graph patterns, and any part of a query pattern may have an
optional part. In this example, there are two optional graph patterns.

Data:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

Σελίδα 45 από 102

_:a foaf:name "Alice" .

_:a foaf:homepage <http://work.example.org/alice/> .

_:b foaf:name "Bob" .

_:b foaf:mbox <mailto:bob@work.example> .

Query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?mbox ?hpage

WHERE { ?x foaf:name ?name .

 OPTIONAL { ?x foaf:mbox ?mbox } .

 OPTIONAL { ?x foaf:homepage ?hpage }

 }

Query result:

name mbox hpage

"Alice" <http://work.example.org/alice/>

"Bob" <mailto:bob@work.example>

8.2.3 Matching Literals with Numeric Types

Integers in a SPARQL query indicate an RDF typed literal with the
datatype xsd:integer.

For example: 42 is a shortened form of "42"^^

<http://www.w3.org/2001/XMLSchema#integer>.

The pattern in the following query has a solution with variable v bound to :y.

SELECT ?v WHERE { ?v ?p 42 }

Σελίδα 46 από 102

v

<http://example.org/ns#y>

8.2.4 Blank Node Labels in Query Results

Query results can contain blank nodes. Blank nodes in the example result
sets in this document are written in the form "_:" followed by a blank node
label.

Blank node labels are scoped to a result or, for the CONSTRUCT query form,
the result graph. Use of the same label within a result set indicates the same
blank node.

Data:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .

_:b foaf:name "Bob" .

Query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?x ?name

WHERE { ?x foaf:name ?name }

x name

_:c "Alice"

_:d "Bob"

The results above could equally be given with different blank node labels
because the labels in the results only indicate whether RDF terms in the
solutions are the same or different.

Σελίδα 47 από 102

x name

_:r "Alice"

_:s "Bob"

These two results have the same information: the blank nodes used to match
the query are different in the two solutions. There need not be any relation
between a label _:a in the result set and a blank node in the data graph with
the same label.

An application writer should not expect blank node labels in a query to refer to
a particular blank node in the data.

Matching Alternatives

SPARQL provides a means of combining graph patterns so that one of
several alternative graph patterns may match. If more than one of the
alternatives matches, all the possible pattern solutions are found.

Pattern alternatives are syntactically specified with the UNION keyword.

Data:

@prefix dc10: <http://purl.org/dc/elements/1.0/> .

@prefix dc11: <http://purl.org/dc/elements/1.1/> .

_:a dc10:title "SPARQL Query Language Tutorial" .

_:a dc10:creator "Alice" .

_:b dc11:title "SPARQL Protocol Tutorial" .

_:b dc11:creator "Bob" .

_:c dc10:title "SPARQL" .

_:c dc11:title "SPARQL (updated)" .

Σελίδα 48 από 102

Query:

PREFIX dc10: <http://purl.org/dc/elements/1.0/>

PREFIX dc11: <http://purl.org/dc/elements/1.1/>

SELECT ?title

WHERE { { ?book dc10:title ?title } UNION { ?book dc11:title ?title }
}

Query result:

title

"SPARQL Protocol Tutorial"

"SPARQL"

"SPARQL (updated)"

"SPARQL Query Language Tutorial"

This query finds titles of the books in the data.To determine exactly how the
information was recorded, a query could use different variables for the two
alternatives:

PREFIX dc10: <http://purl.org/dc/elements/1.0/>

PREFIX dc11: <http://purl.org/dc/elements/1.1/>

SELECT ?x ?y

WHERE { { ?book dc10:title ?x } UNION { ?book dc11:title ?y } }

x y

 "SPARQL (updated)"

Σελίδα 49 από 102

 "SPARQL Protocol Tutorial"

"SPARQL"

"SPARQL Query Language Tutorial"

This will return results with the variable x bound for solutions from the left
branch of the UNION, and y bound for the solutions from the right branch. If
neither part of the UNION pattern matched, then the graph pattern would not
match.

The UNION pattern combines graph patterns, each alternative possibility can
contain more than one triple pattern:

PREFIX dc10: <http://purl.org/dc/elements/1.0/>

PREFIX dc11: <http://purl.org/dc/elements/1.1/>

SELECT ?title ?author

WHERE { { ?book dc10:title ?title . ?book dc10:creator ?author }

 UNION

 { ?book dc11:title ?title . ?book dc11:creator ?author }

 }

title author

"SPARQL Query Language Tutorial" "Alice"

"SPARQL Protocol Tutorial" "Bob"

This query will only match a book if it has both a title and creator predicate
from the same version of Dublin Core.

8.3 Query Forms

8.3.1 SELECT

The SELECT form of results returns variables and their bindings directly. It
combines the operations of projecting the required variables with introducing
new variable bindings into a query solution.

Σελίδα 50 από 102

Projection

Specific variables and their bindings are returned when a list of variable
names is given in the SELECT clause. The syntax SELECT * is an
abbreviation that selects all of the variables that are in-scope at that point in
the query. It excludes variables only used in FILTER, in the right-hand side
of MINUS, and takes account of subqueries.

Use of SELECT * is only permitted when the query does not have a GROUP
BY clause.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .

_:a foaf:knows _:b .

_:a foaf:knows _:c .

_:b foaf:name "Bob" .

_:c foaf:name "Clare" .

_:c foaf:nick "CT" .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?nameX ?nameY ?nickY

WHERE

 { ?x foaf:knows ?y ;

 foaf:name ?nameX .

 ?y foaf:name ?nameY .

 OPTIONAL { ?y foaf:nick ?nickY }

 }

http://www.w3.org/TR/sparql11-query/#variableScope

Σελίδα 51 από 102

nameX nameY nickY

"Alice" "Bob"

"Alice" "Clare" "CT"

Result sets can be accessed by a local API but also can be serialized into
either JSON, XML, CSV or TSV.

SPARQL 1.1 Query Results JSON Format:

{
 "head": {
 "vars": ["nameX" , "nameY" , "nickY"]
 } ,
 "results": {
 "bindings": [
 {
 "nameX": { "type": "literal" , "value": "Alice" } ,
 "nameY": { "type": "literal" , "value": "Bob" }
 } ,
 {
 "nameX": { "type": "literal" , "value": "Alice" } ,
 "nameY": { "type": "literal" , "value": "Clare" } ,
 "nickY": { "type": "literal" , "value": "CT" }
 }
]
 }
}

SPARQL Query Results XML Format:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head>
 <variable name="nameX"/>
 <variable name="nameY"/>
 <variable name="nickY"/>
 </head>
 <results>
 <result>
 <binding name="nameX">
 <literal>Alice</literal>
 </binding>
 <binding name="nameY">
 <literal>Bob</literal>

http://www.w3.org/TR/sparql11-results-json/
http://www.w3.org/TR/rdf-sparql-XMLres/

Σελίδα 52 από 102

 </binding>
 </result>
 <result>
 <binding name="nameX">
 <literal>Alice</literal>
 </binding>
 <binding name="nameY">
 <literal>Clare</literal>
 </binding>
 <binding name="nickY">
 <literal>CT</literal>
 </binding>
 </result>
 </results>
</sparql>

SELECT Expressions

As well as choosing which variables from the pattern matching are included in
the results, the SELECT clause can also introduce new variables. The rules of
assignment in SELECT expression are the same as for assignment in BIND.
The expression combines variable bindings already in the query solution, or
defined earlier in the SELECT clause, to produce a binding in the query
solution.

The scoping for (expr AS v) applies immediately. In SELECT expressions, the
variable may be used in an expression later in the same SELECT clause and
may not be be assigned again in the same SELECT clause.

Example:

Data:

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix : <http://example.org/book/> .

@prefix ns: <http://example.org/ns#> .

:book1 dc:title "SPARQL Tutorial" .

:book1 ns:price 42 .

:book1 ns:discount 0.2 .

Σελίδα 53 από 102

:book2 dc:title "The Semantic Web" .

:book2 ns:price 23 .

:book2 ns:discount 0.25 .

Query:

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX ns: <http://example.org/ns#>

SELECT ?title (?p*(1-?discount) AS ?price)

{ ?x ns:price ?p .

 ?x dc:title ?title .

 ?x ns:discount ?discount

}

Results:

title price

"The Semantic Web" 17.25

"SPARQL Tutorial" 33.6

New variables can also be used in expressions if they are introduced earlier,
syntactically, in the same SELECT clause:

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX ns: <http://example.org/ns#>

SELECT ?title (?p AS ?fullPrice) (?fullPrice*(1-?discount) AS
?customerPrice)

{ ?x ns:price ?p .

 ?x dc:title ?title .

 ?x ns:discount ?discount

}

Σελίδα 54 από 102

Results:

title fullPrice customerPrice

"The Semantic Web" 23 17.25

"SPARQL Tutorial" 42 33.6

8.3.2 CONSTRUCT

The CONSTRUCT query form returns a single RDF graph specified by a
graph template. The result is an RDF graph formed by taking each query
solution in the solution sequence, substituting for the variables in the graph
template, and combining the triples into a single RDF graph by set union.

If any such instantiation produces a triple containing an unbound variable or
an illegal RDF construct, such as a literal in subject or predicate position, then
that triple is not included in the output RDF graph. The graph template can
contain triples with no variables (known as ground or explicit triples), and
these also appear in the output RDF graph returned by the CONSTRUCT
query form.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .

_:a foaf:mbox <mailto:alice@example.org> .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>

CONSTRUCT { <http://example.org/person#Alice> vcard:FN
?name }

WHERE { ?x foaf:name ?name }

creates vcard properties from the FOAF information:

Σελίδα 55 από 102

@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .

<http://example.org/person#Alice> vcard:FN "Alice" .

Templates with Blank Nodes

A template can create an RDF graph containing blank nodes. The blank node
labels are scoped to the template for each solution. If the same label occurs
twice in a template, then there will be one blank node created for each query
solution, but there will be different blank nodes for triples generated by
different query solutions.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:givenname "Alice" .

_:a foaf:family_name "Hacker" .

_:b foaf:firstname "Bob" .

_:b foaf:surname "Hacker" .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>

CONSTRUCT { ?x vcard:N _:v .

 _:v vcard:givenName ?gname .

 _:v vcard:familyName ?fname }

WHERE

 {

 { ?x foaf:firstname ?gname } UNION { ?x foaf:givenname
?gname } .

 { ?x foaf:surname ?fname } UNION { ?x foaf:family_name
?fname } .

 }

Σελίδα 56 από 102

creates vcard properties corresponding to the FOAF information:

@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .

_:v1 vcard:N _:x .
_:x vcard:givenName "Alice" .
_:x vcard:familyName "Hacker" .

_:v2 vcard:N _:z .
_:z vcard:givenName "Bob" .
_:z vcard:familyName "Hacker" .

The use of variable x in the template, which in this example will be bound to
blank nodes with labels _:a and _:b in the data, causes different blank node
labels (_:v1 and _:v2) in the resulting RDF graph.

Accessing Graphs in the RDF Dataset

Using CONSTRUCT, it is possible to extract parts or the whole of graphs from
the target RDF dataset. This first example returns the graph (if it is in the
dataset) with IRI labelhttp://example.org/aGraph; otherwise, it returns an
empty graph.

CONSTRUCT { ?s ?p ?o } WHERE { GRAPH
<http://example.org/aGraph> { ?s ?p ?o } . }

The access to the graph can be conditional on other information. For
example, if the default graph contains metadata about the named graphs in
the dataset, then a query like the following one can extract one graph based
on information about the named graph:

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX app: <http://example.org/ns#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

CONSTRUCT { ?s ?p ?o } WHERE

 {

 GRAPH ?g { ?s ?p ?o } .

 ?g dc:publisher <http://www.w3.org/> .

 ?g dc:date ?date .

Σελίδα 57 από 102

 FILTER (app:customDate(?date) > "2005-02-
28T00:00:00Z"^^xsd:dateTime) .

 }

where app:customDate identifies an extension function to turn the date format
into an xsd:dateTime RDF term.

Solution Modifiers and CONSTRUCT

The solution modifiers of a query affect the results of a CONSTRUCT query.
In this example, the output graph from the CONSTRUCT template is formed
from just two of the solutions from graph pattern matching. The query outputs
a graph with the names of the people with the top two sites, rated by hits. The
triples in the RDF graph are not ordered.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix site: <http://example.org/stats#> .

_:a foaf:name "Alice" .

_:a site:hits 2349 .

_:b foaf:name "Bob" .

_:b site:hits 105 .

_:c foaf:name "Eve" .

_:c site:hits 181 .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX site: <http://example.org/stats#>

CONSTRUCT { [] foaf:name ?name }

WHERE

{ [] foaf:name ?name ;

http://www.w3.org/TR/sparql11-query/#extensionFunctions

Σελίδα 58 από 102

 site:hits ?hits .

}

ORDER BY desc(?hits)

LIMIT 2

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:x foaf:name "Alice" .
_:y foaf:name "Eve" .

 CONSTRUCT WHERE

A short form for the CONSTRUCT query form is provided for the case where
the template and the pattern are the same and the pattern is just a basic
graph pattern (no FILTERs and no complex graph patterns are allowed in the
short form). The keyword WHERE is required in the short form.

The following two queries are the same; the first is a short form of the second.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT WHERE { ?x foaf:name ?name }

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT { ?x foaf:name ?name }

WHERE

{ ?x foaf:name ?name }

8.3.3 ASK

Applications can use the ASK form to test whether or not a query pattern has
a solution. No information is returned about the possible query solutions, just
whether or not a solution exists.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

Σελίδα 59 από 102

_:a foaf:name "Alice" .

_:a foaf:homepage <http://work.example.org/alice/> .

_:b foaf:name "Bob" .

_:b foaf:mbox <mailto:bob@work.example> .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

ASK { ?x foaf:name "Alice" }

true

The SPARQL Query Results XML Format form of this result set gives:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head></head>
 <boolean>true</boolean>
</sparql>

On the same data, the following returns no match because Alice's mbox is not
mentioned.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

ASK { ?x foaf:name "Alice" ;

 foaf:mbox <mailto:alice@work.example> }

false

8.3.4 DESCRIBE (Informative)

The DESCRIBE form returns a single result RDF graph containing RDF data
about resources. This data is not prescribed by a SPARQL query, where the
query client would need to know the structure of the RDF in the data source,
but, instead, is determined by the SPARQL query processor. The query
pattern is used to create a result set. The DESCRIBE form takes each of the
resources identified in a solution, together with any resources directly named
by IRI, and assembles a single RDF graph by taking a "description" which can
come from any information available including the target RDF Dataset. The

http://www.w3.org/TR/rdf-sparql-XMLres/

Σελίδα 60 από 102

description is determined by the query service. The syntax DESCRIBE * is an
abbreviation that describes all of the variables in a query.

Explicit IRIs

The DESCRIBE clause itself can take IRIs to identify the resources. The
simplest DESCRIBE query is just an IRI in the DESCRIBE clause:

DESCRIBE <http://example.org/>

 Identifying Resources

The resources to be described can also be taken from the bindings to a query
variable in a result set. This enables description of resources whether they are
identified by IRI or by blank node in the dataset:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

DESCRIBE ?x

WHERE { ?x foaf:mbox <mailto:alice@org> }

The property foaf:mbox is defined as being an inverse functional property in
the FOAF vocabulary. If treated as such, this query will return information
about at most one person. If, however, the query pattern has multiple
solutions, the RDF data for each is the union of all RDF graph descriptions.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

DESCRIBE ?x

WHERE { ?x foaf:name "Alice" }

More than one IRI or variable can be given:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

DESCRIBE ?x ?y <http://example.org/>

WHERE {?x foaf:knows ?y}

Descriptions of Resources

The RDF returned is determined by the information publisher. It may be
information the service deems relevant to the resources being described. It

Σελίδα 61 από 102

may include information about other resources: for example, the RDF data for
a book may also include details about the author.

A simple query such as

PREFIX ent: <http://org.example.com/employees#>

DESCRIBE ?x WHERE { ?x ent:employeeId "1234" }

might return a description of the employee and some other potentially useful
details:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0> .
@prefix exOrg: <http://org.example.com/employees#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#>

_:a exOrg:employeeId "1234" ;

 foaf:mbox_sha1sum "bee135d3af1e418104bc42904596fe148e90f033"
;
 vcard:N
 [vcard:Family "Smith" ;
 vcard:Given "John"] .

foaf:mbox_sha1sum rdf:type owl:InverseFunctionalProperty .

which includes the blank node closure for the vcard vocabulary vcard,N. Other
possible mechanisms for deciding what information to return include Concise
Bounded Descriptions [CBD].

For a vocabulary such as FOAF, where the resources are typically blank
nodes, returning sufficient information to identify a node such as the
InverseFunctionalPropertyfoaf:mbox_sha1sum as well as information like
name and other details recorded would be appropriate. In the example, the
match to the WHERE clause was returned, but this is not required.

8.4 Subqueries

http://www.w3.org/TR/vcard-rdf
http://www.w3.org/TR/sparql11-query/#CBD

Σελίδα 62 από 102

Subqueries are a way to embed SPARQL queries within other queries,
normally to achieve results which cannot otherwise be achieved, such as
limiting the number of results from some sub-expression within the query.

Due to the bottom-up nature of SPARQL query evaluation, the subqueries are
evaluated logically first, and the results are projected up to the outer query.

Note that only variables projected out of the subquery will be visible to the
outer query.

Example

Data:

@prefix : <http://people.example/> .

:alice :name "Alice", "Alice Foo", "A. Foo" .

:alice :knows :bob, :carol .

:bob :name "Bob", "Bob Bar", "B. Bar" .

:carol :name "Carol", "Carol Baz", "C. Baz" .

Return a name (the one with the lowest sort order) for all the people that know
Alice and have a name.

Query:

PREFIX : <http://people.example/>

PREFIX : <http://people.example/>

SELECT ?y ?minName

WHERE {

 :alice :knows ?y .

 {

 SELECT ?y (MIN(?name) AS ?minName)

 WHERE {

 ?y :name ?name .

 } GROUP BY ?y

Σελίδα 63 από 102

 }

}

Results:

y minName

:bob "B. Bar"

:carol "C. Baz"

This result is achieved by first evaluating the inner query:

SELECT ?y (MIN(?name) AS ?minName)

WHERE {

 ?y :name ?name .

} GROUP BY ?y

This produces the following solution sequence:

y minName

:alice "A. Foo"

:bob "B. Bar"

:carol "C. Baz"

Which is joined with the results of the outer query:

y

:bob

:carol

8.5 Building RDF Graphs

Σελίδα 64 από 102

The SELECT query form returns variable bindings. The CONSTRUCT query

form returns an RDF graph. The graph is built based on a template which is

used to generate RDF triples based on the results of matching the graph

pattern of the query.

Data:

@prefix org: <http://example.com/ns#> .

_:a org:employeeName "Alice" .

_:a org:employeeId 12345 .

_:b org:employeeName "Bob" .

_:b org:employeeId 67890 .

Query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX org: <http://example.com/ns#>

CONSTRUCT { ?x foaf:name ?name }

WHERE { ?x org:employeeName ?name }

Results:

@prefix org: <http://example.com/ns#> .

_:x foaf:name "Alice" .
_:y foaf:name "Bob" .

Which can be serialized in RDF/XML as:

<rdf:RDF

http://www.w3.org/TR/rdf-syntax-grammar/

Σελίδα 65 από 102

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 >
 <rdf:Description>
 <foaf:name>Alice</foaf:name>
 </rdf:Description>
 <rdf:Description>
 <foaf:name>Bob</foaf:name>
 </rdf:Description>
</rdf:RDF>

8.6 SPARQL Filters

Graph pattern matching produces a solution sequence, where each solution

has a set of bindings of variables to RDF terms. SPARQL FILTERs restrict

solutions to those for which the filter expression evaluates to TRUE.

Restricting Numeric Values

SPARQL FILTERS can restrict on arithmetic expressions.

Query:

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX ns: <http://example.org/ns#>

SELECT ?title ?price

WHERE { ?x ns:price ?price .

 FILTER (?price < 30.5)

 ?x dc:title ?title . }

Query Result:

title price

"The Semantic Web" 23

Σελίδα 66 από 102

By constraining the price variable, only:book2 matches the query because

only :book2 has a price less than 30.5, as the filter condition requires.

8.7 SPARQL endpoint

A SPARQL endpoint is a conformant SPARQL protocol service as defined in

the SPROT specification. A SPARQL endpoint enables users (human or

other) to query a knowledge base via the SPARQL language. Results are

typically returned in one or more machine-processable formats. Therefore, a

SPARQL endpoint is mostly conceived as a machine-friendly interface

towards a knowledge base. Both the formulation of the queries and the

human-readable presentation of the results should typically be implemented

by the calling software, and not be done manually by human users.

The term endpoint has a more general meaning. In the "normative

definitions" section of the Web Services Description Requirements

document we find the End Point (AKA Port), Definition:

An association between a fully-specified InterfaceBinding and a network

address, specified by a URI, that may be used to communicate with an

instance of a Web Service. An EndPoint indicates a specific location for

accessing a Web Service using a specific protocol and data format (SPARQL,

RDF and XML).

9. D2RQ PLATFORM

The D2RQ Platform is a system for accessing relational databases as virtual,

read-only RDF graphs. It offers RDF-based access to the content of relational

databases without having to replicate it into an RDF store. Using D2RQ you

can:

 query a non-RDF database using SPARQL

 access the content of the database as Linked Data over the Web

 create custom dumps of the database in RDF formats for loading into

an RDF store

 access information in a non-RDF database using the Apache Jena API

http://semanticweb.org/wiki/SPARQL
http://semanticweb.org/wiki/SPROT
http://www.w3.org/TR/ws-desc-reqs/#normDefs
http://www.w3.org/TR/ws-desc-reqs/#normDefs
http://www.w3.org/TR/sparql11-query/
http://en.wikipedia.org/wiki/Linked_Data
http://incubator.apache.org/jena/

Σελίδα 67 από 102

9.1 D2R Server: Accessing databases with SPARQL and as
Linked Data

D2R Server is a tool for publishing relational databases on the Semantic Web.
It enables RDF and HTML browsers to navigate the content of the database,
and allows querying the database using the SPARQL query language. It is
part of the D2RQ Platform.

About D2R Server

D2R Server is a tool for publishing the content of relational databases on

the Semantic Web, a global information space consisting of Linked Data

[Figure 9].

Figure 9 “D2R Server Structure”

Data on the Semantic Web is modelled and represented in RDF. D2R Server

uses a customizable D2RQ mapping to map database content into this

format, and allows the RDF data to be browsed and searched – the two main

access paradigms to the Semantic Web.

Requests from the Web are rewritten into SQL queries via the mapping. This

on-the-fly translation allows publishing of RDF from large live databases and

eliminates the need for replicating the data into a dedicated RDF triple store.

http://d2rq.org/
http://www.w3.org/2001/sw/
http://en.wikipedia.org/wiki/Linked_Data
http://en.wikipedia.org/wiki/Resource_Description_Framework
http://d2rq.org/d2rq-language

Σελίδα 68 από 102

Features

Browsing database contents

A simple web interface allows navigation through the database's

contents and gives users of the RDF data a “human-readable” preview.

Resolvable URIs

Following the Linked Data principles, D2R Server assigns a URI to

each entity that is described in the database, and makes those URIs

resolvable – that is, an RDF description can be retrieved simply by

accessing the entity's URI over the Web. Semantic Web browsers

like Marbles or LinkSailor can follow links from one entity to the next,

surfing the Web of Data.

Content negotiation

Following best practices, the regular web interface and the browsable

RDF graph share the same URIs.

SPARQL endpoint and explorer

The SPARQL interface enables applications to query the database

using the SPARQL 1.1 query language over the SPARQL protocol.

Downloading contents of BLOBs/CLOBs

D2R Server can be configured to serve files stored in the database in

BLOBs or CLOBs.

Serving the vocabulary

If new classes and properties are introduced for a D2R deployment, the

server can make their URIs resolvable in the spirit of Linked Data, and

allows configuration of their labels, comments, and additional

properties.

Publishing metadata

http://linkeddatabook.com/editions/1.0/#htoc8
http://marbles.sourceforge.net/
http://linksailor.com/
http://www.w3.org/TR/cooluris/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-protocol/

Σελίδα 69 από 102

Metadata such as licensing and provenance information can be

attached to every RDF document and web page published by D2R

Server.

9.1.1 Getting started with D2R Server

You need:

 Java 1.5 or newer on the path (check with java -version if you're not

sure),

 A supported database, such as Oracle, SQL Server, PostgreSQL,

MySQL or HSQLDB.

 Optionally, a J2EE servlet container as a deployment target. D2R

Server can be run either as a stand-alone web server or inside an

existing servlet container.

What to do:

1. Download and extract the archive into a suitable location.

2. Download a JDBC driver from your database vendor. Place the

driver's JAR file into D2R Server's /lib directory. A list of JDBC

drivers from different vendors is maintained by Sun. Also take note of

the driver class name (e.g. org.postgresql.Driver for PostgreSQL

or oracle.jdbc.driver.OracleDriver for Oracle) and JDBC URL

pattern (e.g. jdbc:mysql://servername/database for MySQL) from the

driver's documentation. Drivers for MySQL and PostgreSQL are

already included with D2R Server.

3. Generate a mapping file for your database schema using

the generate-mapping tool. Change into the D2R Server directory and

run:

4. generate-mapping -o mapping.ttl -d driver.class.name

 -u db-user -p db-password jdbc:url:...

http://d2rq.org/
http://developers.sun.com/product/jdbc/drivers
http://developers.sun.com/product/jdbc/drivers
http://d2rq.org/generate-mapping

Σελίδα 70 από 102

mapping.ttl is the name for the new mapping file. -d can be skipped for

MySQL.

5. Start D2R Server:

d2r-server mapping.ttl

6. Test the Server: Open http://localhost:2020/ in a web browser.

You can browse the database content or use the SPARQL Explorer to

execute queries and display results in a number of formats.

7. Run a SPARQL query from the command line using the d2r-

query tool:

http://d2rq.org/d2r-server
http://localhost:2020/
http://d2rq.org/d2r-query
http://d2rq.org/d2r-query

Σελίδα 71 από 102

d2r-query mapping.ttl "SELECT * { ?s ?p ?o } LIMIT 10"

Or load the query from a file, here called query.sparql:

d2r-query mapping.ttl @query.sparql

8. Generate an RDF dump using the dump-rdf tool:

dump-rdf mapping.ttl -o dump.nt

After you're up and running, the next step is typically to refine the RDF output

by customizing the D2RQ mapping.

The D2RQ Platform uses the D2RQ Mapping Language to map the content

of a relational database to RDF. A D2RQ mapping specifies how resources

are identified and which properties are used to describe the resources.

The generate-mapping script automatically generates a D2RQ mapping from

the table structure of a database. The tool generates a new RDF vocabulary

for each database, using table names as class names and column names as

property names. Semantic Web client applications will understand more of

your data if you customize the mapping and replace the auto-generated terms

with terms from well-known and publicly accessible RDF vocabularies.

The mapping file can be edited with any text editor. Its syntax is

described in the D2RQ language specification.

D2R Server will automatically detect changes to the mapping file and reload

appropriately when you hit the browser's refresh button.

Note: The HTML and RDF browser interfaces only work for URI patterns that

are relative and do not contain the hash (#) character. For example, a URI

pattern such asentries/@@mytable.id@@ is browsable,

http://d2rq.org/dump-rdf
http://d2rq.org/d2rq-language
http://d2rq.org/generate-mapping
http://d2rq.org/d2rq-language

Σελίδα 72 από 102

but http://example.com/entries#@@mytable.id@@ is not. The mapping

generator only creates browsable patterns. Non-browsable patterns still work

in the SPARQL interface and in RDF dumps.

9.1.2 Running D2R Server from the command line

D2R Server can be run as a stand-alone server application that includes its

own web server. This is recommended for testing and development.

d2r-server [-p port] [-b serverBaseURI]

 [--fast] [--verbose] [--debug]

 mapping-file.ttl

mapping-file.ttl

The name of the D2RQ mapping file to use.

If no mapping file is provided, then the database connection must be

specified on the command line using the same connection

parameters as for the generate-mapping tool, and a default mapping

will be used.

-p port

D2R Server will be started on this port. Defaults to 2020.

-b serverBaseURI

The base URI where D2R Server is running.

Defaults to http://localhost:2020/.

Must be specified if the D2R Server is to be accessible from other

machines or if it is supposed to be run on a port other than 2020.

--fast

http://d2rq.org/d2r-server#arg-p
http://d2rq.org/d2r-server#arg-b
http://d2rq.org/d2r-server#arg-fast
http://d2rq.org/d2r-server#arg-verbose
http://d2rq.org/d2r-server#arg-debug
http://d2rq.org/d2r-server#arg-mapping-file
http://d2rq.org/d2rq-language
http://d2rq.org/generate-mapping#connection
http://d2rq.org/generate-mapping#connection
http://localhost:2020/

Σελίδα 73 από 102

Enables bleeding-edge optimizations that result in better performance

but may not be as well-tested. Generally we recommend the use of this

option unless problems are observed.

--verbose

Output more logging information.

--debug

Output much more logging information.

9.1.3 Running D2R Server in a servlet container

D2R Server can be run as a J2EE web application inside an existing servlet

container, such as Apache Tomcat or Jetty. This is recommended for

production use.

1. Make sure that your mapping file includes a configuration block, as

described in the server configuration section. Set the base URI to

something like http://servername/webappname/.

2. Change the configFile param in /webapp/WEB-INF/web.xml to the

name of your configuration file. For deployment, we recommend

placing the mapping file into the /webapp/WEB-INF/ directory.

3. In D2R Server's main directory, run ant war. This creates

the d2rq.war file. You need Apache Ant for this step.

4. Optionally, if you want a different name for your web application,

rename the file to webappname.war

5. Deploy the war file into your servlet container, e.g. by copying it into

Tomcat's webapps directory.

http://tomcat.apache.org/
http://jetty.codehaus.org/jetty/
http://d2rq.org/d2r-server#configuration
http://ant.apache.org/

Σελίδα 74 από 102

9.1.4 D2R Server Configuration

The server can be configured by adding a configuration block to the

mapping file. This consists of a d2r:Server instance with configuration

properties. An example follows:

@prefix d2r: <http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2r-

server/config.rdf#> .

@prefix meta: <http://www4.wiwiss.fu-berlin.de/bizer/d2r-

server/metadata#> .

<> a d2r:Server;

 rdfs:label "My D2R Server";

 d2r:baseURI <http://localhost:2020/>;

 d2r:port 2020;

 d2r:vocabularyIncludeInstances true;

 d2r:sparqlTimeout 300;

 d2r:pageTimeout 5;

 meta:datasetTitle "My dataset" ;

 meta:datasetDescription "My dataset contains many nice resources."

;

 meta:datasetSource "This other dataset" ;

 meta:operatorName "John Doe" ;

 meta:operatorHomepage ;

 .

9.1.5 Server level Configuration Options

The following configuration properties can be set for the d2r:Server instance:

rdfs:label The server name displayed throughout

the HTML interface.

Σελίδα 75 από 102

d2r:baseURI Base URI of the server. Same as -

b command line parameter.

d2r:port Port of the server. Same as -p command

line parameter.

d2r:vocabularyIncludeInstances Controls whether the RDF and HTML

representations of vocabulary classes will

also list instances, and whether the

representations of properties also list

triples using the property (defaults

to true).

d2r:autoReloadMapping Specifies whether changes to the

mapping file should be detected

automatically (defaults to true). This

feature is convenient for development,

but has performance implications, so this

value should be set to false for production

systems.

d2r:limitPerClassMap Specifies a maximum for the number of

entities per class map that will be

displayed in the “directory” pages of the

web interface. This stops pages from

getting too large, but prevents users from

exploring the full data through the web

interface. This setting does not affect the

RDF output or SPARQL queries. The

default is 50. Use false to disable the

limit.

d2r:limitPerPropertyBridge Specifies a maximum for the number of

values from each property bridge that will

Σελίδα 76 από 102

be displayed in the web interface. This

stops pages from getting too large, but

prevents users from exploring the full

data through the web interface. This

setting does not affect RDF

representations or SPARQL queries. The

default is 50. Use false to disable the

limit.

d2r:sparqlTimeout Specifies a timeout in seconds for the

server's SPARQL endpoint. A value of 0

or a negative value disables the timeout.

d2r:pageTimeout Specifies a timeout in seconds for

generating resource description pages. A

value of 0 or a negative value disables

the timeout.

d2r:metadataTemplate Overrides the default

resource metadata template, refers to a

TTL-encoded RDF file. The literal value

specifies a path name either absolute or

relative to the location of the server

configuration file.

d2r:datasetMetadataTemplate Overrides the default

dataset metadata template, refers to a

TTL-encoded RDF file. The literal value

specifies a path name either absolute or

relative to the location of the server

configuration file.

d2r:disableMetadata Enables the automatic creation and

publication of all dataset and resource

Σελίδα 77 από 102

metadata.

Possible values are "true" and "false".

Note that "true" is assumed if this flag is

missing.

d2r:documentMetadata A simpler alternative to

d2r:metadataTemplate: The value should

be a blank node. Any statements

involving this blank node will be copied as

metadata into any RDF documents

generated by D2R Server, with the blank

node replaced with the document's

URL. #

Note that further configuration options can be set elsewhere in the mapping

file. Database-level configuration is specified on the d2rq:Database instances,

and configuration of the D2RQ query engine is specified on

a d2rq:Configuration instance.

9.1.6 Dataset and Resource Metadata

Often, providing additional information for the served resources is desirable.

Main areas for this additional information include licensing, proveance, and

general dataset descriptions. D2R Server has comprehensive support for this

so-called metadata. First, metadata can be provided on two levels: Every

served resource can have metadata assigned, and the entire dataset served

by the D2R server installation can also have metadata assigned. Metadata

templates are RDF documents, that can contain placeholders, which are

replaced with user-specified information, configuration values, or run-time

information. The resource metadata are added to the RDF and HTML

responses for each requested resource, while the dataset metdata is served

at a single URL which is created by appending /dataset to the configuration

valued2r:baseURI. Most of the dataset metadata is auto-generated from the

http://d2rq.org/d2r-server#d2r:documentMetadata
http://d2rq.org/d2rq-language#database
http://d2rq.org/d2rq-language#configuration
http://d2rq.org/d2r-server#d2r:baseURI

Σελίδα 78 από 102

mapping file, with the user-specified dataset metadata then being mixed into

the RDF and HTML representation of the dataset metadata.

9.1.7 Optimizing Performance

Here are some simple hints to improve D2R's performance:

 Define primary keys whenever you can and create indexes where

applicable (e.g. on foreign keys) – besides optimizing database

performance, these will be picked up and used by various optimizations

within D2RQ.

 Use the latest optimizations by launching D2R Server with --fast (or

activate d2rq:useAllOptimizations).

 Provide hint properties.

 Indicate directions in d2rq:joins to enable join optimizations.

 Give D2R Server more heap space by means of Java's -

Xmx parameter in d2r-server or d2r-server.bat (default: -Xmx1G).

 To prevent excessively large pages in the web interface, consider

changing the values of

d2r:limitPerClassMap and d2r:limitPerPropertyBridge.

 Consider changing the default timeout values for SPARQL queries and

for page generation.

 To speed up the generation of large pages, consider

setting d2rq:resultSizeLimit, d2rq:limit,

and d2r:vocabularyIncludeInstances.

 Set d2rq:autoReloadMapping to false where it is not required.

 Databases often ship with development configurations that are

designed for a small footprint rather than performance. For instance,

some good pointers for optimizing MySQL can be the key buffer size,

the additional buffer memory.

http://d2rq.org/d2rq-language#d2rq:useAllOptimizations
http://d2rq.org/d2rq-language#hint
http://d2rq.org/d2rq-language#d2rq:join
http://d2rq.org/d2r-server#d2r:limitPerClassMap
http://d2rq.org/d2r-server#d2r:limitPerPropertyBridge
http://d2rq.org/d2r-server#d2r:sparqlTimeout
http://d2rq.org/d2r-server#d2r:pageTimeout
http://d2rq.org/d2rq-language#d2rq:resultSizeLimit
http://d2rq.org/d2rq-language#d2rq:limit
http://d2rq.org/d2r-server#d2r:vocabularyIncludeInstances
http://d2rq.org/d2r-server#configuration

Σελίδα 79 από 102

9.2 Auto-generating D2RQ mapping files

The generate-mapping tool creates a D2RQ mapping file by analyzing the
schema of an existing database. This mapping file, called the default
mapping, maps each table to a new RDFS class that is based on the table's
name, and maps each column to a property based on the column's name.
This mapping file can be used as-is or can be customized.

Usage

generate-mapping [-u user] [-p password] [-d driver]

 [-l script.sql] [--[skip-](schemas|tables|columns) list]

 [--w3c] [-v] [-b baseURI] [-o outfile.ttl]

 [--verbose] [--debug]

 jdbcURL

Connection Parameters

jdbcURL

JDBC connection URL for the database. Refer to your JDBC driver

documentation for the format for your database engine. Examples:

MySQL: jdbc:mysql://servername/databasename

PostgreSQL: jdbc:postgresql://servername/databasename

Oracle: jdbc:oracle:thin:@servername:1521:databasename

HSQLDB: jdbc:hsqldb:mem:databasename (in-memory database)

MSQLServer: jdbc:sqlserver://servername;databaseName=databasen

ame (due to the semicolon, the URL must be put in quotes when

passed as a command-line argument in Linux/Unix shells)

If -l is present, then the JDBC URL can be omitted to load a SQL script

into an in-memory HSQLDB database.

http://d2rq.org/
http://d2rq.org/generate-mapping#arg-u
http://d2rq.org/generate-mapping#arg-p
http://d2rq.org/generate-mapping#arg-d
http://d2rq.org/generate-mapping#arg-l
http://d2rq.org/generate-mapping#arg-include-exclude
http://d2rq.org/generate-mapping#arg-w3c
http://d2rq.org/generate-mapping#arg-v
http://d2rq.org/generate-mapping#arg-b
http://d2rq.org/generate-mapping#arg-o
http://d2rq.org/generate-mapping#arg-verbose
http://d2rq.org/generate-mapping#arg-debug
http://d2rq.org/generate-mapping#arg-jdbc-url
http://d2rq.org/generate-mapping#arg-l

Σελίδα 80 από 102

-u user

The login name of the database user.

-p password

The password of the database user.

-d driver

The fully qualified Java class name of the database driver. For MySQL,

PostgreSQL, and HSQLDB, this argument can be omitted as drivers

are already included with D2RQ. For other databases, a driver has to

be downloaded from the vendor or a third party. The jar file containing

the JDBC driver class has to be in D2RQ's /lib/db-drivers/ directory. To

find the driver class name, consult the driver documentation.

Examples:

Oracle: oracle.jdbc.OracleDriver

MSQL Server: com.microsoft.sqlserver.jdbc.SQLServerDriver

-l script.sql

Load a SQL script before running the tool. Useful for initializing the

connection and testing. The d2rq:startupSQLScript property of the

database in the generated mapping will be initialized with the same

value.

--schemas, --tables, --columns, --skip-schemas, --skip-tables, --skip-

columns

Only map the specified schemas, tables or columns. The value of each

argument is a comma-separated list of names. Schema names are of

the form schema, table names of the form table or schema. table, and

column names are

http://d2rq.org/d2rq-language#d2rq:startupSQLScript

Σελίδα 81 από 102

table.column or schema.table.column.

Each dot-separated segment can be specified as a regular expression

encloded between slashes.

If the value starts with “@”, then it is interpreted as a file name, and the

list of names is loaded from the file. The file contains one name per line

or comma-separated names. Examples follow:

 --schema SCOTT (maps only tables in the SCOTT schema)

 --tables PERSONS,ORGS (maps only

the PERSONS and ORGS tables)

 --skip-table TEMP_CACHE (skips the TEMP_CACHE table)

 --skip-columns /.*/.CHECKSUM (skips the CHECKSUM column

of each table, if present)

 --skip-tables /BACKUP.*/i (skips

tables backup1, BACKUP_2 and so on)

 --skip-tables @exclude.txt (reads a list of excluded table names

from a file

Output parameters

--w3c

Generate a mapping file that is compatible with W3C's Direct Mapping

of Relational Data to RDF. This is an experimental feature and work

in progress.

-v

Generate an RDF Schema description of the vocabulary instead of a

mapping file.

-o outfile.ttl

http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/TR/rdb-direct-mapping/

Σελίδα 82 από 102

The generated mapping (or vocabulary if -v is used) will be stored in

this file in Turtle syntax. If this parameter is omitted, the result will be

written to standard out.

-b baseURI

The base URI is used to construct a vocabulary namespace that will

automatically be served as Linked Data by D2R Server, following the

convention http://baseURI/vocab/resource/. This should be the same

base URI that is used when invoking the server. Defaults

to http://localhost:2020/.

--verbose

Print extra progress log information.

--debug

Print all debug log information.

Examples

Local MySQL database

generate-mapping -u root jdbc:mysql:///iswc

Remote Oracle database

generate-mapping -u riccyg -p password -d oracle.jdbc.OracleDriver

 -o staffdb-mapping.ttl

jdbc:oracle:thin:@ora.intranet.deri.ie:1521:staffdb

http://d2rq.org/generate-mapping#arg-v

Σελίδα 83 από 102

9.2.1 Direct Mapping Description

The direct mapping defines an RDF Graph [RDF-concepts] representation of
the data in a relational database. The direct mapping takes as input a
relational database (data and schema), and generates an RDF graph that is
called the direct graph. The algorithms in this document compose a graph of
relative IRIs which must be resolved against a base IRI [RFC3987] to form an
RDF graph.

Foreign keys in relational databases establish a reference from any row in a
table to exactly one row in a (potentially different) table. The direct graph
conveys these references, as well as each value in the row.

Direct Mapping Example

The concepts in direct mapping can be introduced with an example RDF

graph produced by a relational database. Following is SQL (DDL) to create a

simple example with two tables with single-column primary keys and one

foreign key reference between them:

CREATE TABLE "Addresses" (

 "ID" INT, PRIMARY KEY("ID"),

 "city" CHAR(10),

 "state" CHAR(2)

)

CREATE TABLE "People" (

 "ID" INT, PRIMARY KEY("ID"),

 "fname" CHAR(10),

 "addr" INT,

 FOREIGN KEY("addr") REFERENCES "Addresses"("ID")

)

INSERT INTO "Addresses" ("ID", "city", "state") VALUES (18, 'Cambridge',

'MA')

INSERT INTO "People" ("ID", "fname", "addr") VALUES (7, 'Bob', 18)

INSERT INTO "People" ("ID", "fname", "addr") VALUES (8, 'Sue', NULL)

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-rdf-graph
http://www.w3.org/TR/rdb-direct-mapping/#RDF-concepts
http://www.w3.org/TR/rdb-direct-mapping/#RFC3987

Σελίδα 84 από 102

HTML tables will be used in this document to convey SQL tables. The primary

key of these tables will be marked with the PK class to convey an SQL

primary key such as ID in

CREATE TABLE "Addresses" ("ID" INT, ... PRIMARY KEY("ID")).

Foreign keys will be illustrated with a notation like "→ Address(ID)" to convey

an SQL foreign key such as:

CREATE TABLE "People" (... "addr" INT, FOREIGN KEY("addr")

REFERENCES "Addresses"("ID")).

People

PK

→ Address(ID)

ID fname addr

7 Bob 18

8 Sue NULL

Given a base IRI http://foo.example/DB/, the direct mapping of this

database produces a direct graph:

@base <http://foo.example/DB/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

Addresses

PK

ID city state

18 Cambridge MA

http://www.w3.org/TR/rdb-direct-mapping/#emp-addr_addr18

Σελίδα 85 από 102

<People/ID=7> rdf:type <People> .

<People/ID=7> <People#ID> 7 .

<People/ID=7> <People#fname> "Bob" .

<People/ID=7> <People#addr> 18 .

<People/ID=7> <People#ref-addr> <Addresses/ID=18> .

<People/ID=8> rdf:type <People> .

<People/ID=8> <People#ID> 8 .

<People/ID=8> <People#fname> "Sue" .

<Addresses/ID=18> rdf:type <Addresses> .

<Addresses/ID=18> <Addresses#ID> 18 .

<Addresses/ID=18> <Addresses#city> "Cambridge" .

<Addresses/ID=18> <Addresses#state> "MA" .

In this expression, each row, e.g. (7, "Bob", 18), produces a set of triples with

a common subject. The subject is an IRI formed from the concatenation of the

base IRI, table name (People), primary key column name (ID) and primary

key value (7). The predicate for each column is an IRI formed from the

concatenation of the base IRI, table name and the column name. The values

are RDF literals formed from the lexical form of the column value. Each

foreign key produces a triple with a predicate composed from the foreign key

column names, the referenced table, and the referenced column names. The

object of these triples is the row identifier (<Addresses/ID=18>) for the

referenced triple. Note that these reference row identifiers must coincide with

the subject used for the triples generated from the referenced row. The direct

mapping does not generate triples for NULL values. Note that it is not known

how to relate the behavior of the obtained RDF graph with the standard SQL

semantics of the NULL values of the source RDB.

Foreign Keys referencing candidate keys

More complex schemas include composite keys. In this example, the columns

deptName and deptCity in the People table reference name and city in

the Department table:

CREATE TABLE "Addresses" (

 "ID" INT,

 "city" CHAR(10),

 "state" CHAR(2),

 PRIMARY KEY("ID")

)

CREATE TABLE "Department" (

Σελίδα 86 από 102

 "ID" INT,

 "name" CHAR(10),

 "city" CHAR(10),

 "manager" INT,

 PRIMARY KEY("ID"),

 UNIQUE ("name", "city")

)

CREATE TABLE "People" (

 "ID" INT,

 "fname" CHAR(10),

 "addr" INT,

 "deptName" CHAR(10),

 "deptCity" CHAR(10),

 PRIMARY KEY("ID"),

 FOREIGN KEY("addr") REFERENCES "Addresses"("ID"),

 FOREIGN KEY("deptName", "deptCity") REFERENCES

"Department"("name", "city")

)

ALTER TABLE "Department" ADD FOREIGN KEY("manager") REFERENCES

"People"("ID")

Following is an instance of this schema:

People

PK

→ Addresses(ID) → Department(name, city)

ID fname addr deptName deptCity

7 Bob 18 accounting Cambridge

8 Sue NULL NULL NULL

Per the People table's compound foreign key to Department:

Addresses

PK

ID city state

18 Cambridge MA

Department

PK Unique Key → People(ID)

ID name City manager

23 accounting Cambridge 8

http://www.w3.org/TR/rdb-direct-mapping/#multi-key_addr18
http://www.w3.org/TR/rdb-direct-mapping/#multi-key_deptacc
http://www.w3.org/TR/rdb-direct-mapping/#multi-key_deptCam
http://www.w3.org/TR/rdb-direct-mapping/#multi-key_per8

Σελίδα 87 από 102

 The rowin People with deptName="accounting" and
deptCity="Cambridge" references a row in Department with a primary
key of ID=23.

 The predicate for this key is formed from "deptName" and "deptCity",
reflecting the order of the column names in the foreign key.

 The object of the above predicate is formed from the base IRI, the table
name "Department" and the primary key value "ID=23".

Note: The order of a primary key constraint's columns is determined by the
DDL statement used to create it. In SQL implementations that support the
information schema, this order can be accessed through
the INFORMATION_SCHEMA.KEY_COLUMN_USAGE.ORDINAL_POSITIO
N column.

In this example, the direct mapping generates the following triples:

@base <http://foo.example/DB/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<People/ID=7> rdf:type <People> .

<People/ID=7> <People#ID> 7 .

<People/ID=7> <People#fname> "Bob" .

<People/ID=7> <People#addr> 18 .

<People/ID=7> <People#ref-addr> <Addresses/ID=18> .

<People/ID=7> <People#deptName> "accounting" .

<People/ID=7> <People#deptCity> "Cambridge" .

<People/ID=7> <People#ref-deptName;deptCity> <Department/ID=23> .

<People/ID=8> rdf:type <People> .

<People/ID=8> <People#ID> 8 .

<People/ID=8> <People#fname> "Sue" .

<Addresses/ID=18> rdf:type <Addresses> .

<Addresses/ID=18> <Addresses#ID> 18 .

<Addresses/ID=18> <Addresses#city> "Cambridge" .

<Addresses/ID=18> <Addresses#state> "MA" .

<Department/ID=23> rdf:type <Department> .

<Department/ID=23> <Department#ID> 23 .

<Department/ID=23> <Department#name> "accounting" .

<Department/ID=23> <Department#city> "Cambridge" .

<Department/ID=23> <Department#manager> 8 .

<Department/ID=23> <Department#ref-manager> <People#ID=8> .

The green triples above are generated by considering the new elements in the
augmented database. Note:

 The Reference Triple

<People/ID=7><People#ref-deptName;deptCity> <Department/ID=23>

is generated by considering a foreign key referencing a candidate key
(different from the primary key).

http://www.w3.org/TR/rdb-direct-mapping/#defn-reference_triple

Σελίδα 88 από 102

Multi - column Primary Keys

Primary keys may also be composite. If, in the above example, the primary

key for Department were (name, city) instead of ID, the identifier for the only

row in this table would be

<Department/name=accounting;city=Cambridge>.

 The triples involving <Department/ID=23> would be replaced with the

following triples:

<People/ID=7> <People#ref-deptName;deptCity>

<Department/name=accounting;city=Cambridge> .

<Department/name=accounting;city=Cambridge> rdf:type <Department>

.

<Department/name=accounting;city=Cambridge> <Department#ID> 23 .

<Department/name=accounting;city=Cambridge> <Department#name>

"accounting" .

<Department/name=accounting;city=Cambridge> <Department#city>

"Cambridge" .

Empty (Non Existent) Primary Keys

If there is no primary key, each row implies a set of triples with a shared

subject, but that subject is a blank node. A Tweets table can be added to the

above example to keep track of employees' tweets in Twitter:

CREATE TABLE "Tweets" (

 "tweeter" INT,

 "when" TIMESTAMP,

 "text" CHAR(140),

 FOREIGN KEY("tweeter") REFERENCES "People"("ID")

)

The following is an instance of table Tweets:

http://www.w3.org/TR/rdb-direct-mapping/#fk-candidate
http://www.w3.org/TR/rdb-direct-mapping/#fk-candidate
http://www.w3.org/TR/rdb-direct-mapping/#fk-candidate

Σελίδα 89 από 102

Tweets

→ People(ID)

tweeter when text

7 2010-08-30T01:33 I really like lolcats.

7 2010-08-30T09:01 I take it back.

Given that table Tweets does not have a primary key, each row in this table is

identified by a Blank Node. In fact, when translating the above table the direct

mapping generates the following triples:

@base <http://foo.example/DB/>

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

_:a rdf:type <Tweets> .

_:a <Tweets#tweeter> "7" .

_:a <Tweets#ref-tweeter> <People/ID=7> .

_:a <Tweets#when> "2010-08-30T01:33"^^xsd:dateTime .

_:a <Tweets#text> "I really like lolcats." .

_:b rdf:type <Tweets> .

_:b <Tweets#tweeter> "7" .

_:b <Tweets#ref-tweeter> <People/ID=7> .

_:b <Tweets#when> "2010-08-30T09:01"^^xsd:dateTime .

_:b <Tweets#text> "I take it back." .

Referencing Tables with Empty Primary Keys

Rows in tables with no primary key may still be referenced by foreign keys.
(Relational database theory tells us that these rows must be unique as foreign
keys reference candidate keys and candidate keys are unique across all the
rows in a table.) References to rows in tables with no primary key are
expressed as RDF triples with blank nodes for objects, where that blank node
is the same node used for the subject in the referenced row.

Here is DDL for a schema with references to a Projects table which has no
primary key:

CREATE TABLE "Projects" (

 "lead" INT,

 FOREIGN KEY ("lead") REFERENCES "People"("ID"),

 "name" VARCHAR(50),

 UNIQUE ("lead", "name"),

 "deptName" VARCHAR(50),

 "deptCity" VARCHAR(50),

 UNIQUE ("name", "deptName", "deptCity"),

http://www.w3.org/TR/rdb-direct-mapping/#multi-key_per7
http://www.w3.org/TR/rdb-direct-mapping/#multi-key_per7

Σελίδα 90 από 102

 FOREIGN KEY ("deptName", "deptCity") REFERENCES

"Department"("name", "city")

)

CREATE TABLE "TaskAssignments" (

 "worker" INT,

 FOREIGN KEY ("worker") REFERENCES "People"("ID"),

 "project" VARCHAR(50),

 PRIMARY KEY ("worker", "project"),

 "deptName" VARCHAR(50),

 "deptCity" VARCHAR(50),

 FOREIGN KEY ("worker") REFERENCES "People"("ID"),

 FOREIGN KEY ("project", "deptName", "deptCity") REFERENCES

"Projects"("name", "deptName", "deptCity"),

 FOREIGN KEY ("deptName", "deptCity") REFERENCES

"Department"("name", "city")

)

The following is an instance of the preceding schema:

Projects

Unique key

Unique key

→ People(ID)

→ Department(name, city)

lead name deptName deptCity

8 pencil survey accounting Cambridge

8 eraser survey accounting Cambridge

TaskAssignments

PK

→ Projects(name, deptName, deptCity)

→ People(ID)

→ Departments(name, city)

worker project deptName deptCity

7 pencil survey accounting Cambridge

http://www.w3.org/TR/rdb-direct-mapping/#multi-key_per8
http://www.w3.org/TR/rdb-direct-mapping/#multi-key_per8
http://www.w3.org/TR/rdb-direct-mapping/#multi-key_per7

Σελίδα 91 από 102

In this case, the direct mapping generates the following triples from the

preceding tables:

@base <http://foo.example/DB/>

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

_:c rdf:type <Projects> .

_:c <Projects#lead> <People/ID=8> .

_:c <Projects#name> "pencil survey" .

_:c <Projects#deptName> "accounting" .

_:c <Projects#deptCity> "Cambridge" .

_:c <Projects#ref-deptName;deptCity> <Department/ID=23> .

_:d rdf:type <Projects> .

_:d <Projects#lead> <People/ID=8> .

_:d <Projects#name> "eraser survey" .

_:d <Projects#deptName> "accounting" .

_:d <Projects#deptCity> "Cambridge" .

_:d <Projects#ref-deptName;deptCity> <Department/ID=23> .

<TaskAssignments/worker=7.project=pencil%20survey> rdf:type

<TaskAssignments> .

<TaskAssignments/worker=7.project=pencil%20survey>

<TaskAssignments#worker> 7 .

<TaskAssignments/worker=7.project=pencil%20survey>

<TaskAssignments#ref-worker> <People/ID=7> .

<TaskAssignments/worker=7.project=pencil%20survey>

<TaskAssignments#project> "pencil survey" .

<TaskAssignments/worker=7.project=pencil%20survey>

<TaskAssignments#deptName> "accounting" .

<TaskAssignments/worker=7.project=pencil%20survey>

<TaskAssignments#deptCity> "Cambridge" .

<TaskAssignments/worker=7.project=pencil%20survey>

<TaskAssignments#ref-deptName;deptCity> <Department/ID=23>

.

<TaskAssignments/worker=7.project=pencil%20survey>

<TaskAssignments#ref-project;deptName;deptCity> _:c .

The absence of a primary key forces the generation of blank nodes, but does

not change the structure of the direct graph or names of the predicates in that

graph.

Σελίδα 92 από 102

9.3 d2r-query: Running SPARQL queries against a database

The d2r-query tool allows executing SPARQL queries against a D2RQ

mapped relational database from the command line. This can be done with or

without a D2RQ mapping file. If a mapping file is specified, then the tool will

query the virtual RDF graph defined by the mapping. If no mapping file is

specified, then the tool will use the default mapping of generate-mapping for

the translation.

To query a D2RQ-mapped database using a web-based interface, use D2R

Server.

Usage

d2r-query [-f format] [-b baseURI] [-t timeout] [--verbose] [--debug]

mapping-file.ttl query

mapping-file.ttl

The filename of a D2RQ mapping file that contains a database

mapping.

If no mapping file is provided, then the database connection must be

specified on the command line using the same connection

parameters as for the generate-mappingtool, and a default mapping

will be used.

query

A SPARQL query. All prefixes defined in the mapping file are available

without being declared. The query can also be read from a file by using

the syntax @filename.

http://d2rq.org/
http://d2rq.org/generate-mapping
http://d2rq.org/d2r-server
http://d2rq.org/d2r-server
http://d2rq.org/d2r-query#arg-f
http://d2rq.org/d2r-query#arg-b
http://d2rq.org/d2r-query#arg-t
http://d2rq.org/d2r-query#arg-verbose
http://d2rq.org/d2r-query#arg-debug
http://d2rq.org/d2r-query#arg-mapping-file
http://d2rq.org/d2r-query#arg-query
http://d2rq.org/d2rq-language
http://d2rq.org/generate-mapping#connection
http://d2rq.org/generate-mapping#connection

Σελίδα 93 από 102

-f format

The output format. Supported formats include text

(the default), xml, json, csv, tsv, srb, and ttl.

-b baseURI

The base URI for turning relative URIs and URI patterns into absolute

URIs. It is used both for the data and for the query.

-t timeout

Query timeout in seconds.

--verbose

Print extra progress log information.

--debug

Print all debug log information.

Examples

Invocation using a mapping file

d2r-query mapping-iswc.ttl "SELECT * { ?s ?p ?o } LIMIT 10"

Writing results to a CSV file

d2r-query -f csv mapping-iswc.ttl "SELECT * { ?paper dc:title ?title }" > papers.csv

Σελίδα 94 από 102

Invocation with default mapping

d2r-query -u root jdbc:mysql:///iswc "SELECT * { ?s ?p ?o } LIMIT 10"

Querying a SQL dump using a temporary in-memory database

dump-rdf -l db_dump.sql -o output.nt "SELECT * { ?s ?p ?o } LIMIT 10"

Reading the query from a file

dump-rdf mapping.ttl @my-query.sparql

9.4 dump-rdf: Dumping the database to an RDF file

The dump-rdf tool uses D2RQ to dump the contents of the whole

database into a single RDF file. This can be done with or without a D2RQ

mapping file. If a mapping file is specified, then the tool will use it to translate

the database contents to RDF. If no mapping file is specified, then the tool will

use the default mapping of generate-mapping for the translation.

Usage

dump-rdf [-f format] [-b baseURI] [-o outfile.ttl]

 [--verbose] [--debug]

 mapping-file.ttl

mapping-file.ttl

The filename of a D2RQ mapping file that contains a database

mapping.

http://d2rq.org/
http://d2rq.org/generate-mapping
http://d2rq.org/dump-rdf#arg-f
http://d2rq.org/dump-rdf#arg-b
http://d2rq.org/dump-rdf#arg-o
http://d2rq.org/dump-rdf#arg-verbose
http://d2rq.org/dump-rdf#arg-debug
http://d2rq.org/dump-rdf#arg-mapping-file
http://d2rq.org/d2rq-language

Σελίδα 95 από 102

If no mapping file is provided, then the database connection must be

specified on the command line using the same connection

parameters as for the generate-mapping tool, and a default mapping

will be used.

-f format

The RDF syntax to use for output. Supported syntaxes are “TURTLE”,

“RDF/XML”, “RDF/XML-ABBREV”, “N3”, and “N-TRIPLE” (the default).

“N-TRIPLE” works best for large databases.

-b baseURI

The base URI for turning relative URIs and URI patterns into absolute

URIs.

-o outfile

Name of the destination file. Defaults to standard output.

--verbose

Print extra progress log information.

--debug

Print all debug log information.

Examples

Dump using a mapping file

dump-rdf -f N-TRIPLE -b http://localhost:2020/ mapping-iswc.ttl > iswc.nt

http://d2rq.org/generate-mapping#connection
http://d2rq.org/generate-mapping#connection

Σελίδα 96 από 102

Dump with default mapping

dump-rdf -u root -f RDF/XML-ABBREV -o iswc-dump.rdf jdbc:mysql:///iswc

This dumps to RDF/XML format and writes the output to a file iswc-dump.rdf.

10. IMPLEMENTATION

10.1 Relational DB to Linked Data

1. Create the database iswc in MySQL (iswc.sql file has given).

2. Feed the downloaded iswc-mysql.sql into mysql by running (you should

specify the full path of the downladed iswc-mysql.sql if you run mysql in

another directory):

 $ mysql -u [username] -p[password] < iswc-mysql.sql

3. Check that the database was created OK. In MySql run, for example:

 show tables;

And

 select FirstName, LastName, email from persons;

Σελίδα 97 από 102

4. Download the mapping file mapping-iswc.ttl (file has given).

5. Change the username in the downloaded mapping file to be your mysql

username and add a password of your mysql (if the password is required

for your mysql)

6. Run d2r-server in the directory you uncompressed it in the step 1 (you

should specify the full path of the mapping-iswc.ttl if you run mysql in

another directory):

http://sw.cs.technion.ac.il/d2rq/tutorial_files/mapping-iswc.ttl

Σελίδα 98 από 102

 d2r-server -p 8080 mapping-iswc.ttl

7. Open the following URL with your web browser:

http://localhost:8080/snorql/

http://localhost:8080/snorql/

Σελίδα 99 από 102

8. Run an example SPARQL query. Write the query into the text of

the SPARQL section and push the "Go!" button. You will see the results of

the query in the SPARQL resultssection. The following query returns the

names and the email addresses of all the people in the database. You can

see that the results match the SQL query select FirstName, LastName,

email from persons; that you run in mysql

 SELECT DISTINCT ?name ?email WHERE {

 ?person rdf:type foaf:Person.

 ?person foaf:name ?name ;

 foaf:mbox ?email

 }

Σελίδα 100 από 102

9. Examples of additional SPARQL queries

 Select people and topics of their interest:

 SELECT DISTINCT ?personName ?topicName WHERE {

 ?person rdf:type foaf:Person.

 ?person foaf:name ?personName.

 ?person iswc:research_interests ?topic.

 ?topic rdfs:label ?topicName .

 }

 Select persons whose research interests include Semantic Web:

 SELECT DISTINCT ?personName ?topicName WHERE {

 ?person rdf:type foaf:Person.

 ?person foaf:name ?personName.

 ?person iswc:research_interests ?topic.

 ?topic rdfs:label ?topicName .

 FILTER (?topicName = "Semantic Web")

 }

 Select all organizations where the people interested in Semantic Web

work:

 SELECT DISTINCT ?organizationName ?personName WHERE {

 ?person rdf:type foaf:Person.

 ?person foaf:name ?personName.

 ?person iswc:research_interests ?topic.

 ?topic rdfs:label ?topicName .

 FILTER (?topicName = "Semantic Web").

 ?person iswc:has_affiliation ?organization .

 ?organization rdfs:label ?organizationName

 }

 Select people who wrote papers on the topic "Semantic Web"

 SELECT DISTINCT ?personName ?paperTitle WHERE {

 ?paper dc:creator ?person .

 ?person foaf:name ?personName.

 ?paper dc:title ?paperTitle .

 ?paper skos:subject ?topic.

 ?topic rdfs:label ?topicName .

 FILTER (?topicName = "Semantic Web")

 }

Σελίδα 101 από 102

 Select people who wrote papers on topic that is not of their interest:

 SELECT DISTINCT ?personName ?paperTitle ?paperTopicName

WHERE {

 ?paper dc:creator ?person .

 ?person foaf:name ?personName.

 ?paper dc:title ?paperTitle .

 ?paper skos:subject ?paperTopic.

 ?paperTopic rdfs:label ?paperTopicName .

 OPTIONAL { ?person iswc:research_interests

?personTopic .

 FILTER (?personTopic = ?paperTopic) }

 FILTER (!BOUND(?personTopic))

 }

 Select papers and their authors and organizations:

 SELECT DISTINCT ?paperTitle ?authorName ?organizationName

WHERE {

 ?paper dc:creator ?author .

 ?author foaf:name ?authorName.

 ?paper dc:title ?paperTitle .

 ?author iswc:has_affiliation ?organization .

 ?organization rdfs:label ?organizationName

 }

 Select papers that were written by authors from different organizations:

 SELECT DISTINCT ?paperTitle ?authorName ?organizationName

WHERE {

 ?paper dc:creator ?author .

 ?author foaf:name ?authorName.

 ?paper dc:title ?paperTitle .

 ?author iswc:has_affiliation ?organization .

 ?organization rdfs:label ?organizationName

 OPTIONAL { ?paper dc:creator ?anotherAuthor .

 ?anotherAuthor iswc:has_affiliation

?anotherOrganization .

 FILTER(?anotherAuthor != ?author &&

 ?anotherOrganization != ?organization)

}FILTER (BOUND(?anotherAuthor)) }

Σελίδα 102 από 102

