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Abstract
During recent yeas the aeaof Evolutionary Algorithms (EAS) in general and the field of Paradle
Evolutionary Algorithms (PEA) in perticular has matured up to a point, where the gplicaion to a
complex red-world problem in some gplied scienceis now potentially feasible and to the benefit of both
fields. The availability of faster and chegper paralel computers makes it possble to apply EAs to large
popdations and very complex popuations. This paper presents a review of current implementation

techniques for EAson paral el hardware.

1. Introduction

Evolutionary Algorithms (EAS) are stochastic search and ogimization techniques which were inspired
by the analogy of evolution and popuation genetics. They have been demonstrated to be dfedive and
robust in seaching very large, varied, spaces in awide range of applicaions[14].

During recent yeas the aea of Evolutionary Algorithms in general and the field of Parale
Evolutionary Algorithms (PEAS) in particular has matured up to a point, where the gplicdion to a
complex red-world problem in some goplied scienceis now potentialy feasible and to the benefit of both
fields.

The dfedivenessof EAs, is limited by their ability to balance the nead for a diverse set of sampling
points with the desire to quickly focus sach upon peential solutions. Due to increasing demands such as
seaching large search spaces with costly evaluation functions and wsing large popuation sizes, thereis an
ever growing nedl for fast implementations to allow quick and flexible experimentation. Most EAs work
with ore large panmictic popuation. Those EAs suffer from the problem that natural seledion relies on
the fitness distribution ower the whae popdation. Parallel processng is the natural route to explore.

Furthermore, some of the difficulties that face standard EAs (such as premature cnwergence and
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This paper presents a dassficaion d current PEAs implementation tedhniques. It is important to
distinguish between two approaches to PEAs. The standard parallel approad, wsing the PEA as a means
of implementing a sequential or parallel EA, and the decomposition approach with the PEA as a particular
model of an EA [21, 34.

2. Evolutionary Algorithms

Evolutionary Algorithms is an interdisciplinary research field with a relationship to biology, Artificia
Intelli gence, numericd optimization and deasion suppat in amoast any engineaing discipline. EAs are
based on models of organic evolution. They maintain a popuation d individuals that evolves over time
and dtimately converges to a unique solution. Ead individual represents not only a seach padnt in the
space of paotential solutions to a given problem, bu also may be atempora container of current
knowledge dou the “laws’ of the environment [5].

The starting popuation is encoded and initialised by an agorithm-dependent method. Eadh individual
has a numeric fitnessvalue that measures how well the parameters encoded in it solve the problem. The
popuation evolves towards successvely better regions of the seach spaceby means of recombination,
mutation and seledion. The seledion algorithm ensures that better individuals have ahigher probability to
survive and reproduce more often than aher individuals. The recombination medianism alows for
mixing of parental information while passng it to their descendants, and mutation introduces innovation
into the popuation. This processis currently used by the foll owing basic variants of EAs:

Genetic Algorithms (Holland, 1973.The individuals of the popdation in a GA are usualy

represented as fixed length binary strings but there ae GAs that use strings from higher cardinality
a phabetsand with variable length. Recombination (crossover) is the primary operator and mutation
is considered as a secndary seach operator.

Evolution Strategies (Rechenberg and Schwefel, 1973. Initialy ES used seledion and mutation on
one individual only. Recombination and larger popuations were introduced later. Red value
representationis usually used. Mutationis the primary operator.

Evolutionary Programming (Fogel, 1966. EP uses problem oriented representation. Mutation is the
primary operator and depends on the representation used. It is usually adaptive. Recombination is
rarely used.

3. Categorization of Parallel Evolutionary Algorithms

In this ®dion, a cdegorization d PEASs is presented based onthe two basic goproacies mentioned
before, namely the standard parallel approach, and the decomposition approach. The dasgficaion



presented IS 3milar o aner Clas3ricalorns o, o, 19, £Z4

In the first approad, the sequential EA model is implemented ona parallel computer. This is usually
dore by dividing the task of evaluating the popuation among several procesors.

In a PEA modd, the full popuation exists in dstributed form. Either multiple independent or
interading subpopuiations exist (coarse-grained or distributed EA), or there is only one popuation with
eadh popdation member interading only with a limited set of neighbas (fine-grained EA). The
interadion ketween popuations, or members of a popuation, take placewith resped to a spatial structure
of the popuation. The PEAs are dassfied acwrding to this atia structure, the granularity of the
distributed popuation, and the manner in which the EA operators are gplied.

In a marse-grained PEA, the popuationis divided into several (usually equal) subpopuations, ead of
which runs an EA independently and in paralel on its own subpopuation. Occasiondly, fit individuals
migrate randamly from one subpopuation to ancther (island mode!). In some implementations migrant
individuals may move only to geographicadly neaby subpopuations (islands), rather than to any arbitrary
subpopuiation (stepping-stone model).

In afine-grained PEA, the popdation is divided so that ead individual is assgned to ore processor.
Individuals sled from, crosover with, and replace only indviduals in a boundd region
(neighbarhooddeme). Since neighbarhoods overlap, fit individuals will propagate through the whole
popuation (Diffusion or isolation-by-distance or neighborhood model).

The final methodto perall €lize EAs uses sme wmbination d the previous methods, with some alded
complexity in some cases.

These models maintain more diverse subpopuations mitigating the problem of premature wnvergence
They aso returaly fit the model of the way evolution is viewed as occurring, with a large degree of
independence in the global popuation. Parallel EAs based on Subpopuiation Modelling can even be
considered as creding new paradigms within this area and thus establishing a new and promising field of

reseach.

4. Standard Parallel Approach

Also refered to as global parallelization. This method maintains a single popuation and the evaluation
of the individuals and/or the goplicaion d genetic operators are dorein parallel. A simple way to dothis
isto perallelize the loop that credes the next generation from the previous one. Most of the stepsin this
loop (evaluation, crossover, mutation, and, if used, locd seach) can be exeauted in parallel. The seledion
step, depending on the seledion agorithm and the problem solved, usualy requires a global ranking that
can be apardl e battlened.

A single master procesor supervises the total popuation and daes the seledion. Slave-procesors



recaveinaviauas tnal are reamaoinea to crede o springs (F1g. 1). 1 nese o Springs nave to te e/aludled

before they are returned to the master [1, 2, 13.
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Figure 1. Schematic representation o standard parall el approach

The dgorithm is synchronous, when the master waits to receve the fitnessvalues for al the popuation
before procealing to next generation. Eventhough most global pardlel EA implementations are
synchronots, it is passble to implement asynchronows global PEAS, where the master does nat stop to
wait for any slow processors.

Using a distributed memory computer, the cmmmunicaion owerheal associated with dstributing data
structures to processors, and synchronising and coll eding the results, grows as the square of popuation's
size. This can minimise any performance improvements due to multiple processors, uness function
evauation (or locd seach) is a time-consuming process This type of paralelism is more dficiently

implemented onshared-memory madines.

5. The Decomposition Approach
The main charaderistic of this approad is that the full popuation existsin distributed form

5.1. Coarse-Grained Parallel Genetic Algorithms (Migration model)

It is the most popuar method and many papers have been written describing many aspeds of their
implementation. In a arse-grained o distributed PEA, the popuation is divided into severd
subpopuiations. Each subpopuation is assgned to a different processor (island). Each procesor runs a
sequential EA onits popdation. Individualsin a subpopuation are relatively isolated from individuals on
ancther subpopuation. Isolated popuations help maintain genetic diversity. Therefore the popuation o
ead idand can explore adifferent part of the search space Occasiondly, fit individuals migrate from one
popuationto ancther [7, 9, 10, 19, 20, 21, 24, 27, 28, 30, 31, 33, 35, 37, 38, 39

Most implementations run the same EA onead island. Few exceptions are:



- tnedirerent encoangs with direrent sZe or indaiviaual s on separale 1599ands | 24
- the diff erent mutation rates used onthreepopuations of the GAMA system [32]
- the @-operating popuations, where popuations are dl owed to evolve using a number of different
operators and parameters [4]
Despite the dtempts to provide some theoreticd founditions, the setting of the parameters is dill
implemented using intuition rather than analysis. Some important choices are;
- which ather procesors a processor exchanges individuals with
- how often procesors exchange individuals (epoch or migration interval or frequency)
- the number of individuals that processors exchange with ead ather (migration rate)

- what strategy is used in seleding individuals to migrate

5.2. Coarse-Grained Parallel Genetic Algorithms (Migration model)

In a fine-grained PGA usualy one individual is asdgned to ead processor. The individuas are
allowed to mate only within a neighbarhood,cdl ed a deme. Eventhough most implementations propcse a
relatively small deme size, the aiticd parameter is the ratio of the radius of the deme to the size of the
underlying gid. Shape of deme may be a coss sguare, line @c. Demes overlap by an amourt that
depends on their shape and size. Thus fit individuals are dlowed to propagate through the whoe
popuation. Some important choices are the size of the neighbahooddeme size, the processor conredion
topdogy, andthe individual replaceanent scheme [6, 11, 12, 17, 25, 26, 29, 34,136

6. Hybrid Parallel Algorithms

Some reseachers have tried to combine two or more methods to parall elize EAs, and this results in
hybrid PEAs. Some of these new hybrid PEAs add a new degreeof complexity, but other manage to keep
the same complexity as one of their comporents.

Some hybrids have a oarse-grained EA at the upper level and a fine-grained EA at the lower. [16,17,
18, 23. Anacther way to hybridize aPEA isto use aform of global parallelization onead o the isands
of a aarse-grained PEA [7] or vice-versa ammbine "maste-slave EA with coarse-grained Eas at the lower
level [33].

7. Conclusions

This paper reviewed some representative puldicaions on PEAs and presented a cdegorization into
three caegories. standard or global paralélization, decompaosition model (coarse- and fine-grained
algorithms), and hybrid EAs.

The reseach onPEASs is dominated by studies on coarse-grained algorithms. The review suggests that



here de severa tuncamenta 1S3Ues reman t0 oe ddresa (migration rates, communicalion topaogy,
deme size dc.) questions that remain uranswered. Hybridization d PEAs sems to be usefull, resulting in
faster and more robust algorithms.

Generaly, PEAs improve the performance of EAs not only in terms of speedup bu also in terms of the
qudity of the solution found. PEAs maintain more diverse subpopuations mitigating the problem of
premature mnvergence They also naturally fit the model of the way evolution is viewed as occurring,

with alarge degreeof independencein the global popuation.
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