
PARALLEL EVOLUTIONARY ALGORITHMS: A REVIEW

Panagiotis Adamidis

Dept. of Applied Informatics,

University of Macedonia,

Egnatias 156, Thessaloniki, Greece  GR-540 06

Email: adamidis@uom.gr

Abstract

During recent years the area of Evolutionary Algorithms (EAs) in general and the field of Parallel

Evolutionary Algorithms (PEA) in particular has matured up to a point, where the application to a

complex real-world problem in some applied science is now potentially feasible and to the benefit of both

fields. The availabilit y of faster and cheaper parallel computers makes it possible to apply EAs to large

populations and very complex populations. This paper presents a review of current implementation

techniques for EAs on parallel hardware.

1. Introduction

Evolutionary Algorithms (EAs) are stochastic search and optimization techniques which were inspired

by the analogy of evolution and population genetics. They have been demonstrated to be effective and

robust in searching very large, varied, spaces in a wide range of applications [14].

During recent years the area of Evolutionary Algorithms in general and the field of Parallel

Evolutionary Algorithms (PEAs) in particular has matured up to a point, where the application to a

complex real-world problem in some applied science is now potentially feasible and to the benefit of both

fields.

The effectiveness of EAs, is limited by their abilit y to balance the need for a diverse set of sampling

points with the desire to quickly focus search upon potential solutions. Due to increasing demands such as

searching large search spaces with costly evaluation functions and using large population sizes, there is an

ever growing need for fast implementations to allow quick and flexible experimentation. Most EAs work

with one large panmictic population. Those EAs suffer from the problem that natural selection relies on

the fitness distribution over the whole population. Parallel processing is the natural route to explore.

Furthermore, some of the diff iculties that face standard EAs (such as premature convergence, and



searching multimodal spaces) may be less of a problem for parallel variants.

This paper presents a classification of current PEAs implementation techniques. It is important to

distinguish between two approaches to PEAs. The standard parallel approach, using the PEA as a means

of implementing a sequential or parallel EA, and the decomposition approach with the PEA as a particular

model of an EA [21, 36].

2. Evolutionary Algorithms

Evolutionary Algorithms is an interdisciplinary research field with a relationship to biology, Artificial

Intelli gence, numerical optimization and decision support in almoast any engineering discipline. EAs are

based on models of organic evolution. They maintain a population of individuals that evolves over time

and ultimately converges to a unique solution. Each individual represents not only a search point in the

space of potential solutions to a given problem, but also may be a temporal container of current

knowledge about the “laws” of the environment [5].

The starting population is encoded and initialised by an algorithm-dependent method. Each individual

has a numeric fitness value that measures how well the parameters encoded in it solve the problem. The

population evolves towards successively better regions of the search space by means of recombination,

mutation and selection. The selection algorithm ensures that better individuals have a higher probabilit y to

survive and reproduce more often than other individuals. The recombination mechanism allows for

mixing of parental information while passing it to their descendants, and mutation introduces innovation

into the population. This process is currently used by the following basic variants of EAs:

Genetic Algorithms (Holland, 1975).The individuals of the population in a GA are usually

represented as fixed length binary strings but there are GAs that use strings from higher cardinality

alphabetsand with variable length. Recombination (crossover) is the primary operator and mutation

is considered as a secondary search operator.

Evolution Strategies (Rechenberg and Schwefel, 1973). Initially ES used selection and mutation on

one individual only. Recombination and larger populations were introduced later. Real value

representation is usually used. Mutation is the primary operator.

Evolutionary Programming (Fogel, 1966). EP uses problem oriented representation. Mutation is the

primary operator and depends on the representation used. It is usually adaptive. Recombination is

rarely used.

3. Categorization of Parallel Evolutionary Algorithms

In this section, a categorization of PEAs is presented based on the two basic approaches mentioned

before, namely the standard parallel approach, and the decomposition approach. The classification



presented is similar to other classifications [3, 8, 15, 22].

In the first approach, the sequential EA model is implemented on a parallel computer. This is usually

done by dividing the task of evaluating the population among several processors.

In a PEA model, the full population exists in distributed form. Either multiple independent or

interacting subpopulations exist (coarse-grained or distributed  EA), or there is only one population with

each population member interacting only with a limited set of neighbors (fine-grained EA). The

interaction between populations, or members of a population, take place with respect to a spatial structure

of the population. The PEAs are classified according to this spatial structure, the granularity of the

distributed population, and the manner in which the EA operators are applied.

In a coarse-grained PEA, the population is divided into several (usually equal) subpopulations, each of

which runs an EA independently and in parallel on its own subpopulation. Occasionally, fit individuals

migrate randomly from one subpopulation to another (island model). In some implementations migrant

individuals may move only to geographically nearby subpopulations (islands), rather than to any arbitrary

subpopulation (stepping-stone model).

In a fine-grained PEA, the population is divided so that each individual is assigned to one processor.

Individuals select from, crossover with, and replace only individuals in a bounded region

(neighborhood/deme). Since neighborhoods overlap, fit individuals will propagate through the whole

population (Diffusion or isolation-by-distance or neighborhood model).

The final method to parallelize EAs uses some combination of the previous methods, with some added

complexity in some cases.

These models maintain more diverse subpopulations mitigating the problem of premature convergence.

They also naturally fit the model of the way evolution is viewed as occurring, with a large degree of

independence in the global population. Parallel EAs based on Subpopulation Modelli ng can even be

considered as creating new paradigms within this area and thus establishing a new and promising field of

research.

4. Standard Parallel Approach

Also refered to as global parallelization. This method maintains a single population and the evaluation

of the individuals and/or the application of genetic operators are done in parallel. A simple way to do this

is to parallelize the loop that creates the next generation from the previous one. Most of the steps in this

loop (evaluation, crossover, mutation, and, if used, local search) can be executed in parallel. The selection

step, depending on the selection algorithm and the problem solved, usually requires a global ranking that

can be a parallel bottleneck.

A single master processor supervises the total population and does the selection. Slave-processors



receive individuals that are recombined to create offsprings (Fig. 1). These offsprings have to be evaluated

before they are returned to the master [1, 2, 13].

Figure 1. Schematic representation of standard parallel approach

The algorithm is synchronous, when the master waits to receive the fitness values for all the population

before proceeding to next generation. Eventhough most global parallel EA implementations are

synchronous, it is possible to implement asynchronous global PEAs, where the master does not stop to

wait for any slow processors.

Using a distributed memory computer, the communication overhead associated with distributing data

structures to processors, and synchronising and collecting the results, grows as the square of population's

size. This can minimise any performance improvements due to multiple processors, unless function

evaluation (or local search) is a time-consuming process. This type of parallelism is more eff iciently

implemented on shared-memory machines.

5. The Decomposition Approach

The main characteristic of this approach is that the full population exists in distributed form

5.1. Coarse-Grained Parallel Genetic Algorithms (Migration model)

It is the most popular method and many papers have been written describing many aspects of their

implementation. In a coarse-grained or distributed PEA, the population is divided into several

subpopulations. Each subpopulation is assigned to a different processor (island). Each processor runs a

sequential EA on its population. Individuals in a subpopulation are relatively isolated from individuals on

another subpopulation. Isolated populations help maintain genetic diversity. Therefore the population of

each island can explore a different part of the search space. Occasionally, fit individuals migrate from one

population to another [7, 9, 10, 19, 20, 21, 24, 27, 28, 30, 31, 33, 35, 37, 38, 39].

Most implementations run the same EA on each island. Few exceptions are:



- the different encodings with different size of individuals on separate islands [22]

- the different mutation rates used on three populations of the GAMA system [32]

- the co-operating populations, where populations are allowed to evolve using a number of different

operators and parameters [4]

Despite the attempts to provide some theoretical foundations, the setting of the parameters is still

implemented using intuition rather than analysis. Some important choices are:

- which other processors a processor exchanges individuals with

- how often processors exchange individuals (epoch or migration interval or frequency)

- the number of individuals that processors exchange with each other (migration rate)

- what strategy is used in selecting individuals to migrate

5.2. Coarse-Grained Parallel Genetic Algorithms (Migration model)

In a fine-grained PGA usually one individual is assigned to each processor. The individuals are

allowed to mate only within a neighborhood, called a deme. Eventhough most implementations propose a

relatively small deme size, the criti cal parameter is the ratio of the radius of the deme to the size of the

underlying grid. Shape of deme may be a cross, square, line etc. Demes overlap by an amount that

depends on their shape and size. Thus fit individuals are allowed to propagate through the whole

population. Some important choices are the size of the neighborhood/deme size, the processor connection

topology, and the individual replacement scheme [6, 11, 12, 17, 25, 26, 29, 34, 36]

6.  Hybrid Parallel Algorithms

Some researchers have tried to combine two or more methods to parallelize EAs, and this results in

hybrid PEAs. Some of these new hybrid PEAs add a new degree of complexity, but other manage to keep

the same complexity as one of their components.

Some hybrids have a coarse-grained EA at the upper level and a fine-grained EA at the lower. [16, 17,

18, 23]. Another way to hybridize a PEA is to use a form of global parallelization on each of the islands

of a coarse-grained PEA [7] or vice-versa combine "maste-slave EA with coarse-grained Eas at the lower

level [33].

7.  Conclusions

This paper reviewed some representative publications on PEAs and presented a categorization into

three categories: standard or global parallelization, decomposition model (coarse- and fine-grained

algorithms), and hybrid EAs.

The research on PEAs is dominated by studies on coarse-grained algorithms. The review suggests that



there are several fundamental issues remain to be addressed (migration rates, communication topology,

deme size etc.) questions that remain unanswered. Hybridization of PEAs seems to be usefull , resulting in

faster and more robust algorithms.

Generally, PEAs improve the performance of EAs not only in terms of speedup but also in terms of the

quality of the solution found. PEAs maintain more diverse subpopulations mitigating the problem of

premature convergence. They also naturally fit the model of the way evolution is viewed as occurring,

with a large degree of independence in the global population.
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