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Abstract

We propose a new algorithm for the computation of a minimal polynomial basis of the left
kernel of a given polynomial matrix F(s). The proposed method exploits the structure of the
left null space of generalized Wolovich or Sylvester resultants to compute row polynomial
vectors that form a minimal polynomial basis of left kernel of the given polynomial matrix.
The entire procedure can be implemented using only orthogonal transformations of constant
matrices and results to a minimal basis with orthonormal coefficients.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The problem of determination of a minimal polynomial basis of a rational vector
space (see [8]) is the starting point of many control analysis, synthesis and design
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techniques based on the “polynomial matrix approach” [22,6,15,21]. Given a rational
transfer function matrix P(s) it is usually required to determine left or right co-
prime polynomial matrix fractional representations (factorizations) of P(s) of the
form P(s) = D−1

L (s)NL(s) = NR(s)D−1
R (s). Moreover, in many applications apart

from the coprimeness requirement of the above factorizations, it is often desirable to
have factorizations where either the denominator matrices DL(s), DR(s) or the com-
pound matrices E(s) := [DL(s), NL(s)], F(s) := [N�

R (s), −D�
R (s)]� have respec-

tively minimal row or column degrees, i.e. they are row or column proper (reduced).
Classical examples of such applications are the denominator assignment problem
(see [23,6,7,15,16,1]) and the determination of a minimal realization (see [22,21,20])
of a MIMO rational transfer function, where a minimal in the above sense and co-
prime factorization of the plant is required. Furthermore, even the problem of row or
column reduction of a polynomial matrix itself can be solved using minimal polyno-
mial bases computation techniques as described in [4,18].

The classical approach (see [22,11]) to the problem of finding a minimal poly-
nomial basis of a rational vector space, starts from a given, possibly non-minimal,
polynomial basis and in the sequel applying polynomial matrix techniques (extrac-
tion of greatest common divisors and unimodular transformations for row/column
reduction) one can obtain the desired minimal basis. However, such implementations
are known to suffer of serious numerical problems and thus they are not recom-
mended for real-life applications. A numerically reliable alternative to the classical
approach has been presented in [3]. The method presented in [3] utilizes the “pencil
approach” by applying generalized Schur decomposition on the block companion
form of the polynomial matrix, which in turn allows the computation of a minimal
polynomial basis of the original matrix. A second alternative appears in [19], where
the computation of the minimal basis is accomplished via the Padé approximants of
the polynomial matrices involved. Our approach to the problem is comparable to the
techniques presented in [12–14,17] where the computation of minimal polynomial
bases of matrix pencils is considered and to the one in [2] where the structure of
Sylvester resultant matrices is being utilized.

The problem of computation of a minimal basis can be stated as follows. Given
a full column rank (over R(s)) polynomial matrix F(s) ∈ R(p+m)×m[s] determine a
left unimodular, row proper matrix E(s) ∈ Rp×(p+m)[s] such that

E(s)F (s) = 0.

Then E(s) is a minimal polynomial basis of the left kernel of F(s). Our approach
to the problem exploits the structure of the generalized Sylvester or Wolovich resul-
tant (see [5,1]) of the polynomial matrix F(s). Notice that the methods presented in
[3,19,12,13,2] deal with the dual problem, i.e. determination of a minimal basis of
the right kernel of E(s).

The outline of the paper is as follows. In Section 2 we present the necessary
mathematical background and notation as well as some known results regarding the
structure of generalized resultants. Section 3 presents the main results of the paper
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along with the proposed algorithm for the computation of minimal polynomial bases.
In Section 4 we discuss the numerical properties of the proposed algorithm, while in
Section 5 we provide illustrative examples for the method. Finally, in Section 6 we
summarize and draw our conclusions.

2. Mathematical background

In the following R, C, R(s), R[s], Rpr(s), Rpo(s) are respectively the fields of
real numbers, complex numbers, real rational functions, the rings of polynomials,
proper rational and strictly proper rational functions all with coefficients in R and
indeterminate s. For a set F, Fp×m denotes the set of p × m matrices with entries in
F. N+ is the set of positive integers. The symbols rankF(.), kerF(.) and ImF(.) denote
respectively the rank, right kernel (null space) and image (column span) of the matrix
in brackets over the field F. Furthermore in certain cases we may use the symbols
kerL

F (.) and ImL
F (.) to denote the left kernel and row span of the corresponding matrix

over F. In case F is omitted in one of these symbols R is implied. If m ∈ N+ then m
denotes the set {1, 2, . . . , m}.

A polynomial matrix T (s) ∈ Rp×m[s] will be called left (resp. right) unimodular
iff rank T (s0) = p (resp. rank T (s0) = m) for every s0 ∈ C, or equivalently iff T (s)

has no zeros in C. When T (s) is a square polynomial matrix then T (s) will be called
unimodular iff rank T (s0) = p = m for every s0 ∈ C.

A polynomial matrix X(s) ∈ Rp×m[s] (p � m) is called column proper or col-
umn reduced iff its highest column degree coefficient matrix, denoted by Xhc, which
is formed by the coefficients of the highest powers of s in each column of X(s), has
full column rank. The column degrees of X(s) are usually denoted by degci X(s),
i ∈ m. Respectively Y (s) ∈ Rp×m[s] (p � m) is called row proper or row reduced
iff Y�(s) is column proper and the row degrees of Y (s) are denoted by degri Y (s),
i ∈ p.

Let F(s) ∈ R(p+m)×m[s] with rankR(s)F (s) = m and E(s) ∈ Rp×(p+m)[s] with
rankR(s)E(s) = p be polynomial matrices such that

E(s)F (s) = 0. (2.1)

When (2.1) is satisfied and E(s) is row proper and left unimodular, E(s) is a
minimal polynomial basis [8] of the (rational vector space spanning the) left ker-
nel of F(s) and the row degrees degri E(s) =: µi, i ∈ p of E(s) are the invariant
minimal row indices of the left kernel of F(s) or simply the left minimal indices
of F(s). Similarly when (2.1) is satisfied with F(s) column proper and right uni-
modular, F(s) is a minimal polynomial basis of the (rational vector space spanning
the) right kernel of E(s) and the column degrees degci F (s) =: νi, i ∈ m of F(s) are
the invariant minimal column indices of the right kernel of E(s) or simply the right
minimal indices of E(s).
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Given a polynomial matrix F(s) ∈ R(p+m)×m[s] and k, a, b ∈ N+ we introduce
the matrices

Sa,b(s) := [Ia, sIa, . . . , s
b−1Ia]� ∈ Rba×a[s], (2.2)

Xk(s) := Sp+m,k(s)F (s) ∈ R(p+m)k×m[s]. (2.3)

Formula (2.3) is essentially the basis for the construction of generalized resultants.
Let F(s) = F0 + sF1 + · · · + sqFq, Fi ∈ R(p+m)×m and write

Xk(s) = RkSm,q+k(s), (2.4)

where Rk

Rk :=


F0 F1 . . . Fq 0 . . . 0

0 F0 F1 . . . Fq

. . .
...

...
. . .

. . . . . .
. . . 0

0 . . . 0 F0 F1 . . . Fq

 ∈ R(p+m)k×m(q+k). (2.5)

The matrix Rk is known [5] as the Generalized Sylvester Resultant of F(s).
Let νi = degci F (s), i ∈ m be the column degrees of F(s). Similarly to [22]

(p. 242) Xk(s) can be written as

Xk(s) = Mekblock diag
i∈m

{S1,νi+k(s)}, (2.6)

where Mek ∈ R(m+p)k×(mk+∑m
i=1 νi). The matrix Mek is defined [1] as the General-

ized Wolovich Resultant of F(s).
Write F(s) = [f1(s), f2(s), . . . , fm(s)] where fi(s) = fi0 + sfi1 + · · · +

sνi fiki
∈ R(m+p)×1[s], i ∈ m are the columns of F(s). Then it is easy to see that

Mek = [R1
k , R

2
k , . . . , R

m
k ], (2.7)

where

Ri
k =


fi0 fi1 . . . fiki

0 . . . 0
0 fi0 fi1 . . . fiki

. . . 0
...

...
. . .

. . . . . .
. . .

...

0 0 . . . fi0 fi1 . . . fiki

 ∈ R(m+p)k×(νi+k) i ∈ m,

is the generalized Sylvester resultant of the column fi(s), i ∈ m of F(s). It is easy
to see that the two types of generalized resultants are related through

Rk = [Mek, 0(m+p)k,b]Pk, (2.8)

where Pk ∈ Rm(q+k)×m(q+k) is a column permutation matrix. The fact that Rk con-
tains at least b = mq − ∑m

i=1 νi , where q = maxi∈m{νi}, zero columns has been
observed in [23]. The following result will be very useful in the sequel.

Theorem 2.1. Let E(s) ∈ Rp×(p+m)[s] be a minimal polynomial basis for the left
kernel of F(s) as in (2.1) and let µi = degri E(s), i ∈ p be the invariant minimal
row indices of the left kernel of F(s). Then
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rank Rk = rank Mek = (p + m)k − vk, (2.9)

where vk = ∑
i:µi<k(k − µi) = dim kerL Mek = dim kerL Rk.

Proof. The rank formula (2.9) for the generalized Sylvester resultant first appeared
in [5], while the corresponding result for the generalized Wolovich resultant has been
established in [1]. Furthermore, the fact that rank Rk = rank Mek becomes obvious
in view of Eq. (2.8). �

3. Computation of minimal polynomial bases

It is evident from the last result of the above section that the orders of the left
minimal indices of a polynomial matrix F(s) are closely related to the structure of
the generalized Sylvester or Wolovich resultants. Furthermore, the following result
shows the connection between the coefficients of a minimal polynomial basis of the
left kernel of F(s) and a basis of the left kernel of either Rk or Mek .

Theorem 3.1. Let E(s) be a minimal polynomial basis for the left kernel of F(s) as
in (2.1). Let µi = degri E(s), i ∈ p be the invariant minimal row indices of the left
kernel of F(s), and denote by ak the number of rows of E(s) with µi = k. Then

kerL Rk = kerL Mek = ImLLk, (3.1)

where Lk ∈ Rvk×k(p+m), is defined by

block diag
i:µi<k

{S1,k−µi
(s)}Ek(s) = LkSp+m,k(s), (3.2)

and Ek(s) ∈ Rγk×(p+m) is a polynomial matrix that consists of all γk = ∑k−1
i=0 ai

rows of E(s) with row degrees satisfying µi < k.

Proof. Since Ek(s) consists of rows of E(s) satisfying µi = degri E(s) < k, in view
of (2.1) it is easy to see that

Ek(s)F (s) = 0, (3.3)

for every s ∈ C. Postmultiplying (3.2) by F(s) and using (3.3) gives

LkXk(s) = 0,

with Xk(s) defined in (2.3). Now using respectively (2.4) and (2.6), we get

LkRkSm,q+k(s) = 0 and LkMek block diag
i∈m

{S1,νi+k(s)} = 0,

for every s ∈ C. Thus

LkRk = 0 and LkMek = 0,
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which proves that ImLLk ⊂ kerL Rk and ImLLk ⊂ kerL Mek . Furthermore it is easy
to see that Lk has full row rank since the existence of a (constant) row vector w̄� ∈
R1×vk s.t. w̄�Lk = 0, would imply (via Eq. 3.2) existence of a polynomial vector
w�(s) ∈ R1×γk [s] satisfying w�(s)Ek(s) = 0, which contradicts the fact that E(s)

consists of linearly independent polynomial row vectors. Thus

dim ImLLk =
∑

i:µi<k

(k − µi) = dim kerL Mek = dim kerL Rk,

which completes the proof. �

Our aim is to propose a method for the determination of a minimal polynomial
basis for the left kernel of F(s). As it will be shown in the sequel this can be done via
numerical computations on successive generalized Sylvester or Wolovich resultants
of the polynomial matrix F(s). The key idea is that if we already know a part of
the minimal polynomial basis E(s) of the left kernel of F(s), corresponding to rows
with row degrees less than k, then we can easily determine linearly independent
polynomial row vectors with degree exactly equal to k, that belong to the left kernel
of F(s).

Recall that Ek(s) ∈ Rγk×(p+m)[s] is the matrix defined in Theorem 3.1, i.e. it is
a part of the minimal polynomial basis E(s) of the left kernel of F(s) that contains
only those rows of E(s) with µi = degri E(s) < k. For k = 1, 2, 3, . . . we define the
sequence of rational vector spaces

Fk = ImL
R(s)Ek(s). (3.4)

It is easy to see that

F1 ⊆ F2 ⊆ · · · ⊆ Fµ+1 = kerL
R(s) F (s), (3.5)

where µ = maxi∈p{µi}, while obviously

dimR(s) Fk = γk. (3.6)

Theorem 3.2. Let Ek(s) be a minimal polynomial basis of Fk. Define the (vk +
γk) × (p + m)(k + 1) matrix Lk+1 from the relation

block diag
i∈γk

{S1,k−µi+1(s)}Ek(s) = Lk+1Sp+m,k+1(s), (3.7)

and let Nk+1 ∈ Rak×(p+m)(k+1) be such that the (ak + vk + γk) × (p + m)(k + 1)

compound matrix L̃k+1 := [L�
k+1, N

�
k+1]� satisfies

rank L̃k+1 = vk+1 and L̃k+1Me(k+1) = 0, (3.8)

i.e. such that L̃k+1 is a basis of kerL Me(k+1). Then the rows of the polynomial
matrix2

2 If ak = 0 then obviously Ẽk+1(s) = Ek(s).
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Ẽk+1(s) :=
[

Ek(s)

Nk+1(s)

]
,

form a minimal polynomial basis of Fk+1 where Nk+1(s) := Nk+1Sp+m,k+1(s) ∈
Rak×(p+m)[s].

Proof. Postmultiplying (3.7) by F(s) and taking into account (2.6) and the fact that
Ek(s)F (s) = 0 for every s ∈ C, it is easily seen that

Lk+1Me(k+1) = 0, (3.9)

while the rows of Lk+1 are linearly independent. We seek to find linearly indepen-
dent row vectors that together with the rows of Lk+1 form a basis of kerL Me(k+1).
According to Theorem 2.1 dim kerL Me(k+1) = vk+1 which compared to the number
of rows of L̄k+1 shows that we need another ak linearly independent vectors to form
a complete basis of kerL Me(k+1). Assume we determine a ak × (p + m)(k + 1) full
row rank matrix Nk+1 such that

Nk+1Me(k+1) = 0, (3.10)

with rows linearly independent to those of Lk+1, i.e. such that

rank L̃k+1 = vk+1. (3.11)

Obviously the rows of the compound matrix in the above equation form a basis for
the left kernel of Me(k+1). It is easy to verify that the rows of the polynomial matrix
Nk+1(s) will satisfy

Nk+1(s)F (s) = 0.

Furthermore the polynomial rows of Nk+1(s) will have degrees exactly k, since if
there exists a row of Nk+1(s) with degri Nk+1(s) < k, the corresponding row of
Nk+1 would be a linear combination of the rows of Lk+1, which contradicts (3.11).

It is easy to see that there exists a row permutation matrix P such that

PLk+1 =
[
Lk 0
Xk Ehr

k

]
, (3.12)

where Lk ∈ Rvk×k(p+m) is a basis of kerL Mek as defined in (3.2), Xk is a constant
matrix, and Ehr

k is the highest row coefficient matrix of Ek(s). Accordingly partition
Nk+1 as follows

Nk+1 = [Yk, N
hr
k+1],

where Yk ∈ Rak×(p+m)k and Nhr
k+1 ∈ Rak×(p+m) is the highest row coefficient matrix

of Nk+1(s). We shall prove that Ẽk+1(s) is row proper or equivalently that the highest
row degree coefficient matrix of Ẽk+1(s) has full row rank. Obviously

Ẽhr
k+1 =

[
Ehr

k

Nhr
k+1

]
.
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Assume that Ẽk+1(s) is not row proper. Then there exists a row vector [a�, b�] such
that

[a�, b�]
[

Ehr
k

Nhr
k+1

]
= 0. (3.13)

Combining Eqs. (3.9), (3.10) and (3.12) we obtainLk 0
Xk Ehr

k

Yk Nhr
k+1

 Me(k+1) = 0,

while premultiplying the above equation by [0, a�, b�], with a�, b� chosen as in
(3.13) we get

[a�, b�]
[
Xk

Yk

]
Mek = 0.

Now since Lk is a basis of the left kernel of Mek there exists a row vector c� such
that

[a�, b�]
[
Xk

Yk

]
= c�Lk.

It is easy to verify that

[ − c�, a�, b�]
[
P 0
0 Iak

] [
Lk+1

Nk+1

]
= 0,

which contradicts (3.11). Thus Ẽk+1(s) is row proper and thus has full row rank over
R(s). Hence the rows of Ẽk+1(s) form a basis of the rational vector space Fk+1.
Furthermore Ẽk+1(s), as row proper, has no zeros at s = ∞ [21] (Corollary 3.100,
p. 144). It remains to show that Ẽk+1(s) has no finite zeros. Consider the rational
vector space Fk+1 and its minimal polynomial basis formed by the rows of Ek+1(s).
The row orders µi = degri Ek+1(s) are the minimal invariant indices of Fk+1 and
denote by ordFk+1 the (Forney invariant) minimal order of Fk+1, which in our
case is

ordFk+1 =
∑

i:µi<k+1

µi.

The rows of Ẽk+1(s) span also the rational vector space Fk+1. It is known [21, p.
137] that if Z{Ẽk+1(s)} is the total number of (finite and infinite) zeros, δM{Ẽk+1(s)}
is the McMillan degree of Ẽk+1(s), and ordFk+1 is the (Forney invariant [8])
minimal order of the rational vector space spanned by the rows of Ẽk+1(s) then

δM{Ẽk+1(s)} = Z{Ẽk+1(s)} + ordFk+1,

but Ẽk+1(s) is row proper and thus its McMillan degree is equal to the sum of its
row indices, which by construction coincides with

∑
i:µi<k+1 µi = ordFk+1. Thus
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Z{Ẽk+1(s)} = 0 which establishes the fact that Ẽk+1(s) has no finite zeros. Thus
the polynomial matrix Ẽk+1(s) is a row proper and left unimodular, i.e. a minimal
polynomial basis of Fk+1. �

The above theorem essentially allows us to determine successively a minimal
polynomial basis of kerL

R(s) F (s). Starting with k = 0 one can determine a minimal

polynomial basis of F1, i.e. the part of the minimal polynomial basis of kerL
R(s) F (s)

with row indices µi = 0. Using this part of the polynomial basis and applying again
the procedure of Theorem 3.2 for k = 1, we determine a minimal polynomial basis
of F2. The entire procedure can be repeated until we have a minimal polynomial
basis consisting of p row vectors.

In order to obtain numerically stable results one can use singular value decom-
position to obtain orthonormal bases of the kernels of constant matrices involved.
Furthermore, the rows of Nk+1 can be chosen not only to be linearly independent to
those of Lk+1, but orthogonal to each one of them. This can be done by computing

an orthonormal basis of the left kernel of [Me(k+1), L
�
k+1]. The coefficients of a

minimal polynomial basis computed this way will form a set of orthonormal vectors,
i.e. Ek−1E

�
k−1 = Ip.

The entire procedure can be summarized in the following algorithm:

• Step 1. Compute an orthonormal basis N1 of kerL Me1, and set E1 = N1
• Step 2. Set k = 2
• Step 3. Using (3.7) compute Lk for Ek−1(s) = Ek−1Sp+m,k

• Step 4. Determine an orthonormal basis Nk of kerL[Mek, L
�
k ] and set Ek =[

Ek−1|0
Nk

]
• Step 5. Set k = k + 1
• Step 6. If {# of rows Ek−1} < p go to Step 3
• Step 7. The minimal polynomial basis is given by Ek−1Sp+m,k−1(s)

Notice that the above procedure can be applied even if the matrix F(s) has not full
column rank over R(s). Assuming that rankR(s)F (s) = r < m, we can modify step 6
so that the loop stops if {# of rows Ek−1} = p + m − r , since obviously p + m − r

is the dimension of the left kernel of F(s). In case r is unknown, we can still use
the proposed algorithm by leaving the loop running until k reaches mq, since mq

is known to be the upper bound for the maximal left minimal index µ, but with a
significant overhead in computational cost (see next section for more details).

Obviously the proposed algorithm can be easily modified to compute right min-
imal polynomial bases, by simply transposing the polynomial matrix whose right
null space is to be determined. Finally, notice that throughout the above analysis we
have used the generalized Wolovich resultant because in general it has less columns
than the corresponding generalized Sylvester resultant (see (2.8)). However, the left



E.N. Antoniou et al. / Linear Algebra and its Applications 405 (2005) 264–278 273

null space structure of both resultants is identical and the proposed algorithm can be
implemented using either.

4. Numerical considerations

The proposed algorithm requires successive determination of orthonormal bases

of left kernels of the matrices [Mek, L
�
k ] for each k = 1, 2, 3, . . . The most reliable

method to obtain orthonormal bases of null spaces is undoubtedly singular value
decomposition (SVD) (see for instance [9]). Thus the computational complexity at
each step of the algorithm is about O(n3k3) (where for ease of notation we use n :=
p + m for F(s) ∈ R(p+m)×m[s]). Applying standard SVD implementations (such
as Golub–Reinsch SVD or R-SVD) at each step would result in a relatively high
computational cost, since the SVD computed in step k cannot be reused for the next
iteration. However, recently a fast and backward stable algorithm for updating the
SVD when rows or columns are appended to a matrix, appeared in [10]. The cost of
each update is quadratic to matrix dimensions. Applying this technique at each step,
could effectively reduce the total cost of our algorithm up to the kth step, to O(n3k3).
Taking into account that the iterations will continue until k = µ + 1, where µ is the
maximal left minimal index of F(s), we can conclude that the cost of the proposed
algorithm is about O(µ3n3).

Comparing this to the complexity of the algorithm in [3] which is about O(q3n3),
where q is the maximum degree of s in F(s), we can see that our implementation
can be more efficient if µ < q. On the other hand the upper bound for µ is mq, so
the complexity of our algorithm can get as high as O(m3q3n3). However, this upper
bound will only be reached in extreme cases where F(s) has only one left minimal
index of order greater than zero and no finite and infinite elementary divisors (see
Example 5.3). In general when F(s) has finite zeros (elementary divisors) and/or
is not column reduced or even better if p ≈ m, it is expected that µ � q. Still, in
bad cases where generalized resultants tend to become very large, one may employ
sparse or structured matrix techniques to improve the efficiency of the algorithm.

From a numerical stability point of view, each step of the algorithm is stable
since it depends on SVD computations. A complete stability analysis of the entire
algorithm is hard to be accomplished, since there is not a standard way to define small
perturbations for polynomial matrices. However, there are some points in the proce-
dure that are worth mentioning. The actual procedure of computing an orthonormal

basis of the left kernel of Qk := [Mek, L
�
k ], involves the computation of the sin-

gular value decomposition Qk = U�
k �kVk , where Uk, Vk are orthogonal and �k =

diag{σi(Qk), 0} and σi(Qk) are the singular values of Qk . In the sequel the rank
of Qk is determined by choosing rk such that σrk (Qk) � δk > σrk+1(Qk), where
δk = ‖Qk‖∞u and u > 0 is a (small) number such that δk is consistent with the
machine precision [9]. The basis of the left kernel of Qk is then given by the rows
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of Uk corresponding to singular values smaller than δk . It is easy to see that if Nk

(using the notation in step 4 of the algorithm) is such a basis then ‖NkMek‖2 < δk .
The product NkMek gives the coefficients of the multiplication of the newly com-
puted rows of the minimal polynomial basis, by F(s), so it is important to keep
‖NkMek‖2 small relatively to the magnitude of Mek . On the other hand it is easy to
see that ‖Mek‖∞ = ‖Me1‖∞, while due to the special structure of Lk it can be seen

that ‖L�
k ‖∞ � 2p. To avoid problematic situations, where for example ‖Mek‖∞ 	

‖Qk‖∞ which may lead to erroneous computation of rk , it is necessary to scale Mek

in order to “balance” the components of Qk . Experimental results show that a good
practice is to normalize F(s) using ‖Me1‖∞, i.e. setting F(s) = F(s)/‖Me1‖∞. In
such a case a quick calculation yields

‖NkMek‖2 < u ‖ Me1‖∞(2p + 1),

i.e. that the coefficients of the product E(s)F (s) will be of magnitude about u times
the magnitude of the coefficients of F(s), which is close to zero compared to the
magnitude of F(s).

5. Examples

The examples bellow have been computed on an PC, with relative machine preci-
sion EPS = 2−52 
 2.22045 × 10−16.

Example 5.1. Consider the Example 5.2 in [3]. Given then transfer function P(s) =
D−1

L (s)NL(s), where

DL(s) = (s + 2)2(s + 3)

[
1 0
0 1

]
,

NL(s) =
[

3s + 8 2s2 + 6s + 2
s2 + 6s + 2 2s2 + 7s + 8

]
.

We construct the compound matrix F(s) = [DL(s), −NL(s)]� and compute a mini-
mal basis of the left kernel of F(s). We first notice that ‖Me1‖∞ = 36 and normalize
F(s) by setting F(s) = F(s)/‖Me1‖∞. Due to lack of space we use less decimal
digits in intermediate results but the actual computations carried out with the above
mentioned relative machine precision. The normalized form of F(s) is

F(s) =


0.028s3 + 0.194s2 + 0.444s + 0.333 0

0 0.028s3 + 0.194s2 + 0.444s + 0.333

−0.0833s − 0.222 −0.028s2 − 0.167s − 0.056

−0.056s2 − 0.167s − 0.056 −0.083s2 − 0.194s − 0.222

 .
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For k = 1 we compute

Me1 =


0.333 0.444 0.194 0.028 0 0 0 0

0 0 0 0 0.333 0.444 0.194 0.028
−0.222 −0.083 0 0 −0.056 −0.167 −0.028 0
−0.056 −0.167 −0.056 0 −0.222 −0.194 −0.083 0

 ,

and calculate its left kernel, which in this case is empty. Thus E1 = ∅. For k = 2 we
compute

Me2 =



0.333 0.444 0.194 0.028 0 0 0 0 0 0
0 0 0 0 0 0.333 0.444 0.194 0.028 0

−0.222 −0.083 0 0 0 −0.056 −0.167 −0.0278 0 0
−0.056 −0.167 −0.056 0 0 −0.222 −0.194 −0.083 0 0

0 0.333 0.444 0.194 0.028 0 0 0 0 0
0 0 0 0 0 0 0.333 0.444 0.194 0.028
0 −0.222 −0.083 0 0 0 −0.056 −0.167 −0.028 0
0 −0.056 −0.167 −0.056 0 0 −0.222 −0.194 −0.083 0


.

Since E1 = ∅, L2 = ∅ so we have to compute the left kernel of Me2

N2 =
[
−0.343 −0.514 −0.343 −0.686 4.227×10−16 −2.516×10−16 −7.473×10−16 −0.171

]

and set E2 = N2. We proceed for k = 3 and compute Me3 and L3

Me3 =



0.33 0.44 0.19 0.03 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.33 0.44 0.19 0.03 0 0

−0.22 −0.08 0 0 0 0 −0.06 −0.17 −0.03 0 0 0
−0.06 −0.17 −0.06 0 0 0 −0.22 −0.19 −0.08 0 0 0

0 0.33 0.44 0.19 0.03 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.33 0.44 0.19 0.03 0
0 −0.22 −0.08 0 0 0 0 −0.06 −0.17 −0.03 0 0
0 −0.06 −0.17 −0.06 0 0 0 −0.22 −0.19 −0.08 0 0
0 0 0.33 0.44 0.19 0.03 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.33 0.44 0.19 0.03
0 0 −0.22 −0.08 0 0 0 0 −0.06 −0.17 −0.03 0
0 0 −0.06 −0.17 −0.06 0 0 0 −0.22 −0.19 −0.08 0



,

L3 =
[
−0.343 −0.514 −0.343 −0.686 4.227 × 10−16 −2.516 × 10−16

0 0 0 0 −0.343 −0.514

−7.473 × 10−16 −0.171 0 0 0 0
−0.343 −0.686 4.227 × 10−16 −2.516 × 10−16 −7.473 × 10−16 −0.171

]
.
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Next we compute the left null space of [Me3, L
�
3 ] which gives

N3 = [
0.312 −0.092 0.535 −0.272 −0.076 0.110

0.595 −0.332 −6.461 × 10−17 1.717 × 10−16 0.224 −0.038
]
,

and set

E3 =
[−0.343 −0.514 −0.343 −0.686 4.227 × 10−16 −2.516 × 10−16

0.312 −0.092 0.535 −0.272 −0.076 0.110

−7.473 × 10−16 −0.171 0 0 0 0
0.595 −0.332 −6.461 × 10−17 1.717 × 10−16 0.224 −0.038

]
.

We have p = 2 rows in E3 so the loop stops. The (transposed) computed minimal
basis of the left kernel of F(s) is then computed by setting E(s) = E3S4,3(s), i.e.

E�(s) =


8.90294 × 10−17s − 0.342997 −2.46895 × 10−16s2 − 0.0761616s + 0.311713
2.32405 × 10−16s − 0.514496 −3.18563 × 10−16s2 + 0.109531s − 0.091865

−7.15439 × 10−18s − 0.342997 0.223774s2 + 0.59516s + 0.535487
−0.171499s − 0.685994 −0.0380808s2 − 0.332127s − 0.271669

 ,

whose (row) partitioning gives the coprime factorization P(s) = NR(s)D−1
R (s).

Notice that µ = 2 which is less than the degree of F(s), q = 3.

Example 5.2. Consider the Example 5.1 in [3]. Given then transfer function P(s) =
NR(s)D−1

R (s), where

NR(s) =


s2 0 0 0
0 0 0 0
0 0 0 0
0 0 s 0
0 0 0 s

 , DR(s) =


1 − s 0 0 0

0 1 − s 0 0
0 −s 1 − s 0
0 0 0 1 − s

 ,

and construct the compound matrix F(s) = [N�
R (s), −D�

R (s)]�. The minimal basis
of the left kernel of F(s) is then given by our algorithm

E(s) =


0 1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 0 a(s − 1) 0 0 0 −as

a(s − 1) 0 0 0 0 −as2 0 0 0
0 0 0 −bs2 + cs − b 0 0 −bs2 b(s2 − s) 0

 ,

where a 
 0.57735, b 
 0.333333 and c 
 0.666667. The left coprime fractional
representation of P(s) = NL(s)D−1

L (s) can be obtained by appropriately partition-
ing E(s). Notice that µ = 2 which is equal to q = 2.
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Example 5.3. Consider the matrix

F(s) =



−1 0 · · · 0

sq −1
. . .

...

0 sq . . . 0
...

. . .
. . . −1

0 · · · 0 sq


∈ R(m+1)×m[s],

the minimal polynomial basis for the left kernel of F(s) as computed by the algo-
rithm is

E(s) = a[sqm, sq(m−1), . . . , sq, 1] ∈ R1×(m+1)[s],
where a = 1√

m+1
. Obviously µ = qm, which is the worst case from a performance

point of view. Notice the absence of finite and infinite elementary divisors in F(s)

and the fact that dim kerL
R(s) F (s) = 1, thus qm is “consumed” in just one left mini-

mal index.

6. Conclusions

In this note we have proposed a resultant based method for the computation of
minimal polynomial bases of a polynomial matrix. The algorithm utilizes the left
null space structure of successive generalized Wolovich or Sylvester resultants of a
polynomial matrix to obtain the coefficients of the minimal polynomial basis of a the
left kernel of the given polynomial matrix. The entire computation can be accom-
plished using only orthogonal decompositions and the coefficients of the resulting
minimal polynomial basis have the appealing property of being orthonormal. From
a performance point of view our procedure requires about O(n3µ3) floating point
operations which is comparable to other approaches [3,19] since in most cases it is
expected that the order of the maximal left minimal index µ is close to the degree q

of the polynomial matrix itself.
Further research on the subject could address more specific problems like the

computation of row or column reduced polynomial matrices using an approach simi-
lar to [4] (and the improved version of [18]) or the determination of rank, left minimal
indices and greatest common divisors of polynomial matrices.

A test version of the algorithm has been implemented in MathematicaTM 4.2 and
is available upon request to anyone interested.
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